Après avoir attribué une valeur positive τx à chaque x de ℤd, nous nous intéressons à une marche aléatoire au plus proche voisin et réversible pour la mesure de poids (τx), souvent appelée ≪ modèle de Bouchaud ≫. Nous supposons que ces poids sont des variables aléatoires indépendantes, de même loi non-intégrable (à queue polynomiale), et que d≥5. Nous identifions, pour presque toute réalisation des (τx), la limite sous-diffusive de ce modèle. Nous commençons la preuve en exprimant la marche aléatoire comme le changement de temps d'une marche aléatoire en conductances aléatoires. Nous nous consacrons ensuite à montrer que ce changement de temps converge, sous la loi moyennée, vers un subordinateur stable. Nous y parvenons en utilisant un résultat antérieur concernant les propriétés de mélange de l'environnement vu par la marche changée de temps.
Attributing a positive value τx to each x∈ℤd, we investigate a nearest-neighbour random walk which is reversible for the measure with weights (τx), often known as “Bouchaud's trap model.” We assume that these weights are independent, identically distributed and non-integrable random variables (with polynomial tail), and that d≥5. We obtain the quenched subdiffusive scaling limit of the model, the limit being the fractional kinetics process. We begin our proof by expressing the random walk as the time change of a random walk among random conductances. We then focus on proving that the time change converges, under the annealed measure, to a stable subordinator. This is achieved using previous results concerning the mixing properties of the environment viewed by the time-changed random walk.
Mots clés : random walk in random environment, trap model, stable process, fractional kinetics
@article{AIHPB_2011__47_3_813_0, author = {Mourrat, Jean-Christophe}, title = {Scaling limit of the random walk among random traps on $\mathbb {Z}^d$}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {813--849}, publisher = {Gauthier-Villars}, volume = {47}, number = {3}, year = {2011}, doi = {10.1214/10-AIHP387}, zbl = {1262.60098}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/10-AIHP387/} }
TY - JOUR AU - Mourrat, Jean-Christophe TI - Scaling limit of the random walk among random traps on $\mathbb {Z}^d$ JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 813 EP - 849 VL - 47 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/10-AIHP387/ DO - 10.1214/10-AIHP387 LA - en ID - AIHPB_2011__47_3_813_0 ER -
%0 Journal Article %A Mourrat, Jean-Christophe %T Scaling limit of the random walk among random traps on $\mathbb {Z}^d$ %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 813-849 %V 47 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/10-AIHP387/ %R 10.1214/10-AIHP387 %G en %F AIHPB_2011__47_3_813_0
Mourrat, Jean-Christophe. Scaling limit of the random walk among random traps on $\mathbb {Z}^d$. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 3, pp. 813-849. doi : 10.1214/10-AIHP387. http://archive.numdam.org/articles/10.1214/10-AIHP387/
[1] Convergence to fractional kinetics for random walks associated with unbounded conductances. Preprint, 2009. | MR
and .[2] Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38 (2010) 234-276. | MR | Zbl
and .[3] Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120 (1965) 108-123. | MR | Zbl
and .[4] Bouchaud's model exhibits two different aging regimes in dimension one. Ann. Appl. Probab. 15 (2005) 1161-1192. | MR | Zbl
and .[5] Dynamics of trap models. In Les Houches Summer School Lecture Notes 331-394. Elsevier, Amsterdam, 2006. | MR
and .[6] Scaling limit for trap models on ℤd. Ann. Probab. 35 (2007) 2356-2384. | MR | Zbl
and .[7] Aging in two-dimensional Bouchaud's model. Probab. Theory Related Fields 134 (2006) 1-43. | MR | Zbl
, and .[8] Subdiffusion and localization in the one-dimensional trap model. Phys. Rev. E 67 (2003) 026128.
and .[9] Lévy Processes. Cambridge Tracts in Math. 121. Cambridge Univ. Press, 1996. | MR | Zbl
.[10] Convergence of Probability Measures, 2nd edition. Wiley, New York, 1968. | MR | Zbl
.[11] On the static and dynamic points of view for certain random walks in random environment. Methods Appl. Anal. 9 (2002) 345-376. | MR | Zbl
and .[12] Weak ergodicity breaking and aging in disordered systems. J. Phys. I 2 (1992) 1705-1713.
.[13] Out of equilibrium dynamics in spin-glasses and other glassy systems. In Spin Glasses and Random Fields. A. P. Young (Ed.). Series on Directions in Condensed Matter Physics 12. World Scientific, Singapore, 1997.
, , and .[14] Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré Probab. Statist. 23 (1987) 245-287. | Numdam | MR | Zbl
, and .[15] Stretched exponential relaxation in systems with random free energies. J. Phys.Lett. 46 (1985) L463-L466.
, and .[16] An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Statist. Phys. 55 (1989) 787-855. | MR | Zbl
, , and .[17] Random walks with strongly inhomogeneous rates and singular diffusions: Convergence, localization and aging in one dimension. Ann. Probab. 30 (2002) 579-604. | MR | Zbl
, and .[18] K-processes, scaling limit and aging for the trap model in the complete graph. Ann. Probab. 36 (2008) 1322-1358. | MR | Zbl
and .[19] On the dynamics of trap models in ℤd. To appear.
, and .[20] The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser. B 30 (1968) 499-510. | MR | Zbl
.[21] Dynamics of the relaxation-time spectrum in a CuMn spin-glass. Phys. Rev. Lett. 51 (1983) 911-914.
, , and .[22]
, with Y. Peres. Probability on Trees and Networks. Cambridge Univ. Press. To appear. Available at http://mypage.iu.edu/~rdlyons/.[23] Models of traps and glass phenomenology. J. Phys. A Math. Gen. 29 (1996) 3847-3869. | Zbl
and .[24] Variance decay for functionals of the environment viewed by the particle. Ann. Inst. H. Poincaré Probab. Statist. (2010). To appear. | Numdam | MR | Zbl
.[25] Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 (1958) 931-954. | MR | Zbl
.[26] Multiple scaling regimes in simple aging models. Phys. Rev. Lett. 84 (2000) 5403-5406.
, and .[27] Hopping in the glass configuration space: Subaging and generalized scaling laws. Phys. Rev. B 64 (2001) 104417.
, and .[28] Slow Dynamics and Aging in Spin Glasses 184-219. Lecture Notes in Phys. 492. Springer, Berlin, 1997.
, , , and .[29] Stochastic-Process Limits. Springer, New York, 2002. | MR | Zbl
.[30] Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Math. 138. Cambridge Univ. Press, 2000. | MR | Zbl
.[31] Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371 (2002) 461-580. | MR | Zbl
.Cité par Sources :