Invariant measures and a stability theorem for locally Lipschitz stochastic delay equations
Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 4, pp. 1121-1146.

Nous considérons une équation différentielle stochastique retardée à dérive exponentiellement stable et conduite par un processus de Lévy général. Le coefficient de la diffusion est seulement supposé satisfaire une condition lipschitzienne locale et être borné. En supposant une condition additionnelle faible sur les grands sauts du processus de Lévy, nous démontrons l'existence d'une mesure invariante. Les principaux ingrédients de la preuve sont une formule pour les variations des constantes et un théorème de stabilité par rapport aux perturbations des conditions initiales, qui sont d'un intérêt indépendant.

We consider a stochastic delay differential equation with exponentially stable drift and diffusion driven by a general Lévy process. The diffusion coefficient is assumed to be locally Lipschitz and bounded. Under a mild condition on the large jumps of the Lévy process, we show existence of an invariant measure. Main tools in our proof are a variation-of-constants formula and a stability theorem in our context, which are of independent interest.

DOI : https://doi.org/10.1214/10-AIHP396
Classification : 34K50,  60G48
Mots clés : Delay equation, invariant measure, Lévy process, semimartingale, Skorohod space, stability, tightness, variation-of-constants formula
@article{AIHPB_2011__47_4_1121_0,
     author = {Stojkovic, I. and van Gaans, O.},
     title = {Invariant measures and a stability theorem for locally Lipschitz stochastic delay equations},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1121--1146},
     publisher = {Gauthier-Villars},
     volume = {47},
     number = {4},
     year = {2011},
     doi = {10.1214/10-AIHP396},
     mrnumber = {2884227},
     zbl = {1278.34093},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/10-AIHP396/}
}
Stojkovic, I.; van Gaans, O. Invariant measures and a stability theorem for locally Lipschitz stochastic delay equations. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 4, pp. 1121-1146. doi : 10.1214/10-AIHP396. http://archive.numdam.org/articles/10.1214/10-AIHP396/

[1] D. Applebaum. Lévy Processes and Stochastic Calculus. Cambridge Univ. Press, Cambridge, 2004. | MR 2072890 | Zbl 1200.60001

[2] J. Appleby and X. Mao. Stochastic stabilisation of functional differential equations. Systems Control Lett. 54 (2005) 1069-1081. | MR 2170288 | Zbl 1129.34330

[3] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. | MR 1700749 | Zbl 0172.21201

[4] S. Cerrai. Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Probab. Theory Related Fields 125 (2003) 271-304. | MR 1961346 | Zbl 1027.60064

[5] F. Confortola. Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity. Stochastic Process. Appl. 117 (2007) 613-628. | MR 2320952 | Zbl 1112.60048

[6] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge, 1992. | MR 1207136 | Zbl 1140.60034

[7] M. C. Delfour. The largest class of hereditary systems defining a C0 semigroup on the product space. Canad. J. Math. 32 (1980) 969-978. | MR 590659 | Zbl 0448.34074

[8] O. Diekmann, S. A. Van Gils, S. M. Verduyn Lunel and H.-O. Walther. Delay Equations. Functional-, Complex-, and Nonlinear Analysis. Springer, New York, 1995. | MR 1345150 | Zbl 0826.34002

[9] A. Es-Sarhir and W. Stannat. Invariant measures for semilinear SPDE's with local Lipschitz drift coefficients and applications. J. Evol. Equ. 8 (2008) 129-154. | MR 2383485 | Zbl 1156.47042

[10] A. Gushchin and U. Küchler. On stationary solutions of delay differential equations driven by a Lévy process. Stochastic Process. Appl. 88 (2000) 195-211. | MR 1767844 | Zbl 1045.60057

[11] J. Hale. Theory of Functional Differential Equations. Springer, New York, 1977. | MR 508721 | Zbl 0352.34001

[12] E. Hausenblas. SPDEs driven by Poisson random measures with non Lipschitz coefficients: Existence results. Probab. Theory Related Fields 137 (2007) 161-200. | MR 2278455 | Zbl 1119.60054

[13] J. Jacod and J. Memin. Weak and strong solutions of stochastic differential equations: Existence and stability. In Stochastic Integrals, Proceedings, LMS Durham Symposium, 1980 169-212. D. Williams (Ed.). Springer LNM 851. Springer, Berlin, 1981. | MR 620991 | Zbl 0471.60066

[14] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Springer, Berlin, 2003. | MR 1943877 | Zbl 1018.60002

[15] X. Mao. Stochastic Differential Equations and Their Applications. Horwood Publishing, Chichester, 1997. | MR 1475218 | Zbl 0892.60057

[16] S.-E. A. Mohammed. Stochastic Functional Differential Equations. Pitman Advanced Publishing Program, Melbourne, 1984. | MR 754561 | Zbl 0584.60066

[17] S.-E. A. Mohammed and M. K. R. Scheutzow. Lyapunov exponents of linear stochastic functional differential equations. II: Examples and case studies. Ann. Probab. 25 (1997) 1210-1240. | MR 1457617 | Zbl 0885.60043

[18] L. Mytnik, E. Perkins and A. Sturm. On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients. Ann. Probab. 34 (2006) 1910-1959. | MR 2271487 | Zbl 1108.60057

[19] M. Ondreját. Uniqueness for stochastic non-linear wave equations. Nonlinear Anal. 67 (2007) 3287-3310. | MR 2350886 | Zbl 1135.60040

[20] P. E. Protter. Stochastic Integration and Differential Equations, 2nd edition. Springer, Berlin, 2005. | MR 2273672 | Zbl 0694.60047

[21] M. Reiß, M. Riedle and O. Van Gaans. Delay differential equations driven by Lévy processes: Stationarity and Feller properties. Stochastic Process. Appl. 116 (2006) 1409-1432. | MR 2260741 | Zbl 1109.60045

[22] M. Reiß, M. Riedle and O. Van Gaans. On Émery's inequality and a variation-of-constants formula. Stoch. Anal. Appl. 25 (2007) 353-379. | MR 2303092 | Zbl 1127.60062

[23] R. Stelzer. Multivariate COGARCH(1, 1) processes. Bernoulli 16 (2010) 80-115. | MR 2648751 | Zbl 1200.62110

[24] N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan. Probability Distributions on Banach Spaces. D. Reidel Publishing Company, Dordrecht, 1987. | MR 1435288 | Zbl 0698.60003

[25] S. J. Wolfe. On a continuous analogue of the stochastic difference equation Xn = ρXn−1 + Bn. Stochastic Process. Appl. 12 (1982) 301-312. | MR 656279 | Zbl 0482.60062