We consider exponential functionals of a brownian motion with drift in ℝn, defined via a collection of linear functionals. We give a characterisation of the Laplace transform of their joint law as the unique bounded solution, up to a constant factor, to a Schrödinger-type partial differential equation. We derive a similar equation for the probability density. We then characterise all diffusions which can be interpreted as having the law of the brownian motion with drift conditioned on the law of its exponential functionals. In the case where the family of linear functionals is a set of simple roots, the Laplace transform of the joint law of the corresponding exponential functionals can be expressed in terms of a (class-one) Whittaker function associated with the corresponding root system. In this setting, we establish some basic properties of the corresponding diffusion processes.
Nous étudions certaines fonctionelles d'un mouvement Brownien avec dérive dans ℝn qui sont définies par une collection de fonctionnelles linéaires. Nous donnons une caractérisation de la transformée de Laplace de leur loi jointe comme l'unique solution bornée, à une constante près d'une équation aux dérivées partielles de type Schrödinger. Nous déduisons une équation similaire pour la densité. Nous caractérisons ensuite toutes les diffusions qui peuvent être interprétées comme ayant la loi d'un mouvement Brownien avec dérive conditionné par la loi de ses fonctionelles exponentielles. Dans le cas où la famille des fonctionelles est un ensemble de racines simples, la transformée de Laplace de la densité jointe des fonctionnelles exponentielles correspondantes peut être exprimée en termes d'une fonction de Whittaker de classe 1 associée au système. Dans ce cadre, nous établissons quelques propriétés du processus de diffusion correspondant.
Keywords: conditioned brownian motion, quantum Toda lattice
@article{AIHPB_2011__47_4_1096_0, author = {Baudoin, Fabrice and O{\textquoteright}Connell, Neil}, title = {Exponential functionals of brownian motion and class-one {Whittaker} functions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1096--1120}, publisher = {Gauthier-Villars}, volume = {47}, number = {4}, year = {2011}, doi = {10.1214/10-AIHP401}, zbl = {1269.60066}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/10-AIHP401/} }
TY - JOUR AU - Baudoin, Fabrice AU - O’Connell, Neil TI - Exponential functionals of brownian motion and class-one Whittaker functions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 1096 EP - 1120 VL - 47 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/10-AIHP401/ DO - 10.1214/10-AIHP401 LA - en ID - AIHPB_2011__47_4_1096_0 ER -
%0 Journal Article %A Baudoin, Fabrice %A O’Connell, Neil %T Exponential functionals of brownian motion and class-one Whittaker functions %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 1096-1120 %V 47 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/10-AIHP401/ %R 10.1214/10-AIHP401 %G en %F AIHPB_2011__47_4_1096_0
Baudoin, Fabrice; O’Connell, Neil. Exponential functionals of brownian motion and class-one Whittaker functions. Annales de l'I.H.P. Probabilités et statistiques, Volume 47 (2011) no. 4, pp. 1096-1120. doi : 10.1214/10-AIHP401. http://archive.numdam.org/articles/10.1214/10-AIHP401/
[1] On a triplet of exponential Brownian functionals. In Séminaire de probabilités de Strasbourg, XXXV 396-415. Lecture Notes in Math. 1755. Springer, Berlin, 2001. | Numdam | MR | Zbl
, and .[2] Further exponential generalization of Pitman's 2M−X theorem. Electron. Comm. Probab. 7 (2002) 37-46 (electronic). | MR | Zbl
.[3] Conditioned stochastic differential equations: Theory, examples and applications to finance. Stochastic Process. Appl. 100 (2002) 109-145. | MR | Zbl
.[4] Littelmann paths and Brownian paths. Duke Math. J. 130 (2005) 127-167. | MR | Zbl
, and .[5] Paths in Weyl chambers and random matrices. Probab. Theory Related Fields 124 (2002) 517-543. | MR | Zbl
and .[6] Automorphic Forms on GL(3, ℝ). Lecture Notes in Math. 1083. Springer, Berlin, 1984. | MR | Zbl
.[7] Unramified Whittaker functions for GL(3, ℝ). J. Anal. Math. 65 (1995) 19-44. | MR | Zbl
and .[8] The integral of geometric Brownian motion. Adv. in Appl. Probab. 33 (2001) 223-241. | MR | Zbl
.[9] On distribution associated with the generalized Levy's stochastic area formula. Studia Sci. Math. Hungar. 41 (2004) 93-100. | MR | Zbl
.[10] The Plancherel measure for Riemannian symmetric spaces with non-positive curvature. Dokl. Akad. Nauk USSR 145 (1962) 252-255. | MR | Zbl
and .[11] Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture. In Topics in Singularity Theory 103-115. AMS Transl. Ser. 2 180. AMS, Providence, RI, 1997. | MR | Zbl
.[12] The path integral on the Poincaré upper half-plane with a magnetic field and for the Morse potential. Ann. Phys. 187 (1988) 110-134. | MR | Zbl
.[13] Whittaker functions on semisimple Lie groups. Hiroshima Math. J. 12 (1982) 259-293. | MR | Zbl
.[14] Brownian motion on the Hyperbolic plane and Selberg trace formula. J. Funct. Anal. 163 (1999) 63-110. | MR | Zbl
and .[15] Fonctions de Whittaker associées aux groupes de Chevalley. Bull. Soc. Math. France 95 (1967) 243-309. | Numdam | MR | Zbl
.[16] Integral representations for the eigenfunctions of a quantum periodic Toda chain. Lett. Math. Phys. 50 (1999) 53-77. | MR | Zbl
and .[17] Quantisation and representation theory. In Representation Theory of Lie Groups, Proc. SRC/LMS Research Symposium, Oxford 1977 287-316. LMS Lecture Notes 34. Cambridge Univ. Press, Cambridge, 1977. | Zbl
.[18] Special Functions and Their Applications. Dover, New York, 1972. | MR | Zbl
.[19] A version of Pitman's 2M−X theorem for geometric Brownian motions. C. R. Acad. Sci. Paris Sér. 1 328 (1999) 1067-1074. | MR | Zbl
and .[20] Exponential functionals of Brownian motion, I: Probability laws at a fixed time. Probab. Surv. 2 (2005) 312-347. | MR | Zbl
and .[21] A relationship between Brownian motions with opposite drifts. Osaka J. Math. 38 (2001) 383-398. | MR | Zbl
and .[22] Directed polymers and the quantum Toda lattice. Ann. Probab. To appear, 2011. Available at arXiv:0910.0069.
.[23] Brownian analogues of Burke's theorem. Stochastic Process. Appl. 96 (2001) 285-304. | MR | Zbl
and .[24] A representation for non-colliding random walks. Electron. Comm. Probab. 7 (2002) 1-12. | MR | Zbl
and .[25] One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. in Appl. Probab. 7 (1975) 511-526. | MR | Zbl
.[26] Markov functions. Ann. Probab. 9 (1981) 573-582. | MR | Zbl
and .[27] Shansky. Quantisation of open Toda lattices. In Dynamical Systems VII: Integrable Systems, Nonholonomic Dynamical Systems 226-259. V. I. Arnol'd and S. P. Novikov (Eds). Encyclopaedia of Mathematical Sciences 16. Springer, Berlin, 1994. | MR | Zbl
-[28] Poincaré series for GL(3, ℝ)-Whittaker functions. Duke Math. J. 58 (1989) 695-729. | MR | Zbl
.[29] Theory of Eisenstein series for the group SL(3, ℝ) and its application to a binary problem. J. Soviet Math. 18 (1982) 293-324. | Zbl
and .Cited by Sources: