Nous démontrons plusieurs résultats concernant la percolation Lipschitzienne. La probabilité critique pL pour l'existence d'une surface Lipschitzienne ouverte dans la percolation par site sur ℤd (lorsque d ≥ 2) satisfait l'estimation améliorée pL ≤ 1 - 1/[8(d - 1)]. Pour tout p > pL, la hauteur de la plus basse surface Lipschitzienne au-dessus de l'origine a une queue qui décroît exponentiellement vite. Lorsque p est suffisamment proche de 1, la taille des régions connexes de ℤd-1 au-dessus desquelles cette surface a une hauteur supérieure ou égale à 2 possède un comportement exponentiel étiré. Ce dernier résultat provient d'une inégalité stochastique qui montre que la plus basse surface est dominée stochastiquement par la frontière de l'union de certains ensembles aléatoires de ℤd indépendants et identiquement distribués.
We prove several facts concerning Lipschitz percolation, including the following. The critical probability pL for the existence of an open Lipschitz surface in site percolation on ℤd with d ≥ 2 satisfies the improved bound pL ≤ 1 - 1/[8(d - 1)]. Whenever p > pL, the height of the lowest Lipschitz surface above the origin has an exponentially decaying tail. For p sufficiently close to 1, the connected regions of ℤd-1 above which the surface has height 2 or more exhibit stretched-exponential tail behaviour. The last statement is proved via a stochastic inequality stating that the lowest surface is dominated stochastically by the boundary of a union of certain independent, identically distributed random subsets of ℤd.
Mots-clés : percolation, Lipschitz embedding, random surface, branching process, total progeny
@article{AIHPB_2012__48_2_309_0, author = {Grimmett, G. R. and Holroyd, A. E.}, title = {Geometry of {Lipschitz} percolation}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {309--326}, publisher = {Gauthier-Villars}, volume = {48}, number = {2}, year = {2012}, doi = {10.1214/10-AIHP403}, mrnumber = {2954256}, zbl = {1255.60167}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/10-AIHP403/} }
TY - JOUR AU - Grimmett, G. R. AU - Holroyd, A. E. TI - Geometry of Lipschitz percolation JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 309 EP - 326 VL - 48 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/10-AIHP403/ DO - 10.1214/10-AIHP403 LA - en ID - AIHPB_2012__48_2_309_0 ER -
%0 Journal Article %A Grimmett, G. R. %A Holroyd, A. E. %T Geometry of Lipschitz percolation %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 309-326 %V 48 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/10-AIHP403/ %R 10.1214/10-AIHP403 %G en %F AIHPB_2012__48_2_309_0
Grimmett, G. R.; Holroyd, A. E. Geometry of Lipschitz percolation. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 2, pp. 309-326. doi : 10.1214/10-AIHP403. http://archive.numdam.org/articles/10.1214/10-AIHP403/
[1] Improved upper bounds for the critical probability of oriented percolation in two dimensions. Random Structures Algorithms 5 (1994) 573-589. | MR | Zbl
, and .[2] Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times. Stochastic Process. Appl. 111 (2004) 237-258. | MR | Zbl
, and .[3] Inequalities with applications to percolation and reliability. J. Appl. Probab. 22 (1985) 556-569. | MR | Zbl
and .[4] Asymptotic Analysis of Random Walks. Cambridge Univ. Press, Cambridge, 2008. | Zbl
and .[5] Large deviations for random walks under subexponentiality: The big jump domain. Ann. Probab. 36 (2008) 1946-1991. | MR | Zbl
, and .[6] Lipschitz percolation. Electron. Comm. Probab. 15 (2010) 14-21. | MR | Zbl
, , , and .[7] Pinning of interfaces in random media. Preprint, 2009. Available at arXiv:0911.4254. | MR | Zbl
, and .[8] Gibbs state describing coexistence of phases for a three-dimensional Ising model. Theory Probab. Appl. 18 (1972) 582-600. | Zbl
.[9] Rigidity of the interface in percolation and random-cluster models. J. Statist. Phys. 109 (2002) 1-37. | MR | Zbl
and .[10] Existence of subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Probab. 36 (2008) 1209-1220. | MR | Zbl
.[11] Percolation, 2nd edition. Springer, Berlin, 1999. | MR
.[12] The Random-Cluster Model. Springer, Berlin, 2006. | MR | Zbl
.[13] Directed percolation and random walk. In In and Out of Equilibrium 273-297. V. Sidoravicius (Ed.). Birkhäuser, Boston, 2002. | MR | Zbl
and .[14] Lattice embeddings in percolation. Ann. Probab. 40 (2012) 146-161. | MR | Zbl
and .[15] Plaquettes, spheres, and entanglement. Electron. J. Probab. 15 (2010) 1415-1428. | MR | Zbl
and .[16] Two probability theorems and their applications to some first passage problems. J. Austral. Math. Soc. 4 (1964) 214-222. | MR | Zbl
.[17] Survival of discrete time growth models, with applications to oriented percolation. Ann. Appl. Prob. 5 (1995) 613-636. | MR | Zbl
.[18] Continuum Percolation. Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
and .[19] Oriented site percolation, phase transitions and probability bounds. J. Inequal. Pure Appl. Math. 6 (2005) Article 135. | MR | Zbl
and .Cité par Sources :