Nous présentons une méthode de renormalisation pour construire certains modèles de potentiels aléatoires dans un nuage Poissonnien qui sont physiquement plus réalistes. Nous obtenons le mouvement brownien dans un potentiel aléatoire renormalisé et les modèles d'Anderson paraboliques associés. Par exemple, avec cette renormalisation, nous pouvons construire rigoureusement des modèles consistants avec la loi de la gravitation de Newton.
A method known as renormalization is proposed for constructing some more physically realistic random potentials in a Poisson cloud. The Brownian motion in the renormalized random potential and related parabolic Anderson models are modeled. With the renormalization, for example, the models consistent to Newton's law of universal attraction can be rigorously constructed.
Mots clés : renormalization, Poisson field, brownian motion in Poisson potential, parabolic Anderson model, Newton's law of universal attraction
@article{AIHPB_2012__48_3_631_0, author = {Chen, Xia and Kulik, Alexey M.}, title = {Brownian motion and parabolic {Anderson} model in a renormalized {Poisson} potential}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {631--660}, publisher = {Gauthier-Villars}, volume = {48}, number = {3}, year = {2012}, doi = {10.1214/11-AIHP419}, mrnumber = {2976557}, zbl = {1279.60106}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP419/} }
TY - JOUR AU - Chen, Xia AU - Kulik, Alexey M. TI - Brownian motion and parabolic Anderson model in a renormalized Poisson potential JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 631 EP - 660 VL - 48 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP419/ DO - 10.1214/11-AIHP419 LA - en ID - AIHPB_2012__48_3_631_0 ER -
%0 Journal Article %A Chen, Xia %A Kulik, Alexey M. %T Brownian motion and parabolic Anderson model in a renormalized Poisson potential %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 631-660 %V 48 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP419/ %R 10.1214/11-AIHP419 %G en %F AIHPB_2012__48_3_631_0
Chen, Xia; Kulik, Alexey M. Brownian motion and parabolic Anderson model in a renormalized Poisson potential. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 3, pp. 631-660. doi : 10.1214/11-AIHP419. http://archive.numdam.org/articles/10.1214/11-AIHP419/
[1] Large deviations for Riesz potentials of additive processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 626-666. | Numdam | MR | Zbl
, and .[2] Superdiffusivity for a Brownian polymer in a continuous Gaussian environment. Ann. Probab. 36 (2008) 1642-1675. | MR | Zbl
, and .[3] Screening effect due to heavy lower tails in one-dimensional parabolic Anderson model. J. Statist. Phys. 102 (2001) 1253-1270. | MR | Zbl
and .[4] Probability Theory: An Advanced Course. Springer, New York, 1995. | MR | Zbl
.[5] Parabolic Anderson Problem and Intermittency. Amer. Math. Soc., Providence, RI, 1994. | MR | Zbl
and .[6] Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter. Stochastics 62 (1998) 251-273. | MR | Zbl
and .[7] Random Walk Intersections: Large Deviations and Related Topics. Math. Surv. Mono. 157. Amer. Math. Soc., Providence, RI, 2009. | MR | Zbl
.[8] Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related Anderson models. Ann. Probab. 40 (2012) 1436-1482. | MR | Zbl
.[9] Asymptotics of negative exponential moments for annealed Brownian motion in a renormalized Poisson potential. Preprint, 2011. | MR | Zbl
and .[10] Spatial Brownian motion in renormalized Poisson potential: A critical case. Preprint, 2011.
and .[11] On large deviations for the parabolic Anderson model. Probab. Theory Related Fields 147 (2010) 349-378. | MR | Zbl
, and .[12] Intermittency properties in a hyperbolic Anderson problem. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 1150-1164. | Numdam | MR | Zbl
and .[13] Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm. Ann. Probab. 11 (1983) 78-101. | MR | Zbl
.[14] Asymptotics for the Wiener sausage. Comm. Pure Appl. Math. 28 (1975) 525-565. | MR | Zbl
and .[15] Sharp estimation of the almost-sure Lyapunov exponent for the Anderson model in continuous space. Probab. Theory Related Fields 135 (2006) 603-644. | Zbl
and .[16] Second order asymptotics for Brownian motion among a heavy tailed Poissonian potential. Preprint, 2010. | Zbl
.[17] Intermittency on catalysts: Symmetric exclusion. Electron. J. Probab. 12 (2007) 516-573. | Zbl
, and .[18] Moment asymptotics for the continuous parabolic Anderson model. Ann. Appl. Probab. 10 (2000) 192-217. | Zbl
and .[19] Almost sure asymptotics for the continuous parabolic Anderson model. Probab. Theory Related Fields 118 (2000) 547-573. | Zbl
, and .[20] Parabolic problem for the Anderson model. Comm. Math. Phys. 132 (1990) 613-655. | Zbl
and .[21] Localization for Schrödinger operators with Poisson random potential. J. Europ. Math. Soc. 9 (2007) 577-607. | MR | Zbl
, and .[22] Diffusion in disordered media. Adv. in Phys. 36 (1987) 695-798.
and .[23] Brownian motion in a Poisson obstacle field. Séminaire Bourbaki 1998/99 (2000) 91-111. | Numdam | MR | Zbl
.[24] Continuity and boundedness of infinitely divisible process: A Poisson point process approach. J. Theoret. Probab. 18 (2005) 109-160. | MR | Zbl
and .[25] The behavior of certain Wiener integrals as and the density of states of Schrödinger equations with random potential. Teoret. Mat. Fiz. 32 (1977) 88-95. | MR | Zbl
.[26] Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin, 1983. | MR | Zbl
.[27] Confinement of Brownian motion among Poissonian obstacles in , . Probab. Theory Related Fields 114 (1999) 177-205. | MR | Zbl
.[28] Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82 (1989) 451-487. | MR | Zbl
and .[29] On path properties of certain infinitely divisible process. Stochastic Process. Appl. 33 (1989) 73-87. | MR | Zbl
.[30] Non-monotonic random Schrödinger operators: The Anderson model. J. Math. Anal. Appl. 248 (2000) 173-183. | MR | Zbl
.[31] Brownian Motion, Obstacles and Random Media. Springer, Berlin, 1998. | MR | Zbl
.[32] Brownian survival among Poissonian traps with random shapes at critical intensity. Probab. Theory Related Fields 132 (2005) 163-202. | MR | Zbl
, and .Cité par Sources :