Dans cet article, nous étudions les mesures homogènes de Gibbs sur un arbre de Cayley soumises à une évolution de Glauber à une température infinie, et nous considérons leurs propriétés dites « non Gibbsiennes ». Nous montrons que l' état de Gibbs intermédiaire (c'est à dire pour un champ magnétique nul l'état de Gibbs correspondant à la condition au bord libre) se comporte différemment des états de Gibbs « plus » et « moins ». Par exemple, lorsque le temps est assez grand, toutes les configurations sont mauvaises pour l'état intermédiaire, tandis que la configuration « plus » n'est jamais mauvaise pour l'état « plus ». De plus nous montrons que, pour chaque état, il y a deux transitions. Pour l'état intermédiaire il y a une première transition d'un régime Gibbsien à un régime non-Gibbsien, où certaines configurations mais pas toutes sont mauvaises. Après cette première transition, il y en a une seconde dans laquelle l'état intermédiaire passe à un régime où toutes les configurations sont mauvaises. Pour les états « plus » et « moins », il y a également deux transitions : une première d'un régime Gibbsien à un régime non-Gibbsien, et une deuxième d'un régime non-Gibbsien à un régime Gibbsien.
In this paper we study homogeneous Gibbs measures on a Cayley tree, subjected to an infinite-temperature Glauber evolution, and consider their (non-)Gibbsian properties. We show that the intermediate Gibbs state (which in zero field is the free-boundary-condition Gibbs state) behaves differently from the plus and the minus state. E.g. at large times, all configurations are bad for the intermediate state, whereas the plus configuration never is bad for the plus state. Moreover, we show that for each state there are two transitions. For the intermediate state there is a transition from a Gibbsian regime to a non-Gibbsian regime where some, but not all configurations are bad, and a second one to a regime where all configurations are bad. For the plus and minus state, the two transitions are from a Gibbsian regime to a non-Gibbsian one and then back to a Gibbsian regime again.
Mots-clés : non-gibbsianness, Ising models, tree graphs, Cayley tree, Glauber dynamics
@article{AIHPB_2012__48_3_774_0, author = {van Enter, Aernout C. D. and Ermolaev, Victor N. and Iacobelli, Giulio and K\"ulske, Christof}, title = {Gibbs-non-Gibbs properties for evolving {Ising} models on trees}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {774--791}, publisher = {Gauthier-Villars}, volume = {48}, number = {3}, year = {2012}, doi = {10.1214/11-AIHP421}, mrnumber = {2976563}, zbl = {1255.82037}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP421/} }
TY - JOUR AU - van Enter, Aernout C. D. AU - Ermolaev, Victor N. AU - Iacobelli, Giulio AU - Külske, Christof TI - Gibbs-non-Gibbs properties for evolving Ising models on trees JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 774 EP - 791 VL - 48 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP421/ DO - 10.1214/11-AIHP421 LA - en ID - AIHPB_2012__48_3_774_0 ER -
%0 Journal Article %A van Enter, Aernout C. D. %A Ermolaev, Victor N. %A Iacobelli, Giulio %A Külske, Christof %T Gibbs-non-Gibbs properties for evolving Ising models on trees %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 774-791 %V 48 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP421/ %R 10.1214/11-AIHP421 %G en %F AIHPB_2012__48_3_774_0
van Enter, Aernout C. D.; Ermolaev, Victor N.; Iacobelli, Giulio; Külske, Christof. Gibbs-non-Gibbs properties for evolving Ising models on trees. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 3, pp. 774-791. doi : 10.1214/11-AIHP421. http://archive.numdam.org/articles/10.1214/11-AIHP421/
[1] On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice. J. Statist. Phys. 79 (1995) 473-482. | MR | Zbl
, and .[2] Propagation of Gibbsianness for infinite-dimensional gradient Brownian diffusions. J. Statist. Phys. 121 (2005) 511-551. | MR | Zbl
and .[3] Low-temperature dynamics of the Curie-Weiss model: Periodic orbits, multiple histories and loss of Gibbsianness. J. Statist. Phys. 141 (2010) 727-756. | MR | Zbl
and .[4] Gibbsianness and non-Gibbsianness in lattice random fields. In Les Houches Summer School, Session LXXXIII, 2005. Mathematical Statistical Physics, A. Elsevier, Amsterdam, 2006. | MR
.[5] Gibbs Measures and Phase Transitions. de Gruyter, Berlin, 1988. ISBN 0-89925-462-4. | MR | Zbl
.[6] Almost sure quasilocality fails for the random-cluster model on a tree. J. Statist. Phys. 84 (1996) 1351-1361. | MR | Zbl
.[7] Gibbs properties of the fuzzy Potts model on trees and in mean field. Markov Process. Related Fields 10 (2004) 477-506. | MR | Zbl
and .[8] On the extremality of the disordered state for the Ising model on the Bethe lattice. Lett. Math. Phys. 37 (1996) 137-143. | MR | Zbl
.[9] The posterior metric and the goodness of Gibbsianness for transforms of Gibbs measures. Electron. J. Probab. 13 (2008) 1307-1344. | MR | Zbl
and .[10] Loss without recovery of Gibbsianness during diffusion of continuous spins. Probab. Theory Related Fields 135 (2006) 428-456. | MR | Zbl
and .[11] Fractal failure of quasilocality for a majority rule transformation on a tree. Lett. Math. Phys. 54 (2000) 11-24. | MR | Zbl
.[12] Short time conservation of Gibbsianness under local stochastic evolutions. J. Statist. Phys. 109 (2002) 1073-1090. | MR | Zbl
and .[13] On Gibbs measures of transforms of lattice and mean-field systems. Ph.D. thesis, Rijksuniversiteit Groningen, 2009. | Zbl
.[14] Robust phase tramsitions for Heisenberg and other models on general trees. Ann. Probab. 27 (1999) 876-912. | MR | Zbl
and .[15] Short-time Gibbsianness for infinite-dimensional diffusions with space-time interaction. J. Statist. Phys. 138 (2010) 1124-1144. | MR | Zbl
, and .[16] Loss and recovery of Gibbsianness for spins in small external fields. J. Math. Phys. 49 (2008) 125208. | MR | Zbl
and .[17] Gibbsianness versus non-Gibbsianness of time-evolved planar rotor models. Stochastic Processes Appl. 119 (2009) 1866-1888. | MR | Zbl
and .[18] Possible loss and recovery of Gibbsianness during the stochastic evolution of Gibbs measures. Comm. Math. Phys. 226 (2002) 101-130. | MR | Zbl
, , and .[19] A large-deviation view on dynamical Gibbs-non-Gibbs transitions. Mosc. Math. J. 10 (2010) 687-711. | MR | Zbl
, , and .[20] Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory. J. Statist. Phys. 72 (1993) 879-1167. | MR | Zbl
, and .[21] Gibbs-non-Gibbs properties for -vector lattice and mean-field models. Braz. J. Probab. Stat. 24 (2010) 226-255. | MR | Zbl
, , and .Cité par Sources :