Let H0 denote the class of all real valued i.i.d. processes and H1 all other ergodic real valued stationary processes. In spite of the fact that these classes are not countably tight we give a strongly consistent sequential test for distinguishing between them.
Soit H0 la classe de tous les processus indépendants et équidistribués à valeurs réelles, et H1 la classe complémentaire dans l'ensemble des processus ergodiques. Nous donnons un test séquentiel fortement consistant pour les distinguer.
@article{AIHPB_2011__47_4_1219_0, author = {Morvai, Guszt\'av and Weiss, Benjamin}, title = {Testing stationary processes for independence}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1219--1225}, publisher = {Gauthier-Villars}, volume = {47}, number = {4}, year = {2011}, doi = {10.1214/11-AIHP426}, zbl = {1271.62196}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP426/} }
TY - JOUR AU - Morvai, Gusztáv AU - Weiss, Benjamin TI - Testing stationary processes for independence JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 1219 EP - 1225 VL - 47 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP426/ DO - 10.1214/11-AIHP426 LA - en ID - AIHPB_2011__47_4_1219_0 ER -
%0 Journal Article %A Morvai, Gusztáv %A Weiss, Benjamin %T Testing stationary processes for independence %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 1219-1225 %V 47 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP426/ %R 10.1214/11-AIHP426 %G en %F AIHPB_2011__47_4_1219_0
Morvai, Gusztáv; Weiss, Benjamin. Testing stationary processes for independence. Annales de l'I.H.P. Probabilités et statistiques, Volume 47 (2011) no. 4, pp. 1219-1225. doi : 10.1214/11-AIHP426. http://archive.numdam.org/articles/10.1214/11-AIHP426/
[1] Sequential schemes for classifying and predicting ergodic processes. Ph.D. thesis, Stanford Univ., 1976. | MR
.[2] On uniformly consistent tests. Ann. Math. Statist. 22 (1951) 289-293. | MR | Zbl
.[3] A topological criterion for hypothesis testing. Ann. Statist. 22 (1994) 106-117. | MR | Zbl
and .[4] Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13-30. | MR | Zbl
.[5] Distinguishability of sets of distributions. Ann. Math. Statist. 29 (1958) 700-718. | MR | Zbl
and .[6] Some conditions for consistency and uniform consistency of statistical procedures. Univ. California Publ. Statist. 2 (1955) 125-141. | MR | Zbl
.[7] Order estimation of Markov chains. IEEE Trans. Inform. Theory 51 (2005) 1496-1497. | MR
and .[8] On classifying processes. Bernoulli 11 (2005) 523-532. | MR | Zbl
and .[9] Estimating the lengths of memory words. IEEE Transactions on Information Theory 54 (2008) 3804-3807. | MR
and .[10] Hypothesis testing for families of ergodic processes. Bernoulli 12 (2006) 251-269. | MR | Zbl
.[11] How sampling reveals a process. Ann. Probab. 18 (1990) 905-930. | MR | Zbl
and .[12] Some remarks on filtering and prediction of stationary processes. Israel J. Math. 149 (2005) 345-360. | MR | Zbl
.Cited by Sources: