Récemment des progrès notables ont été obtenus dans la description des fluctuations « spatiales » limites pour certains modèles de croissance dans la classe d'universalité de Kardar-Parisi-Zhang (KPZ). Grâce à un changement d'échelle temporelle approprié, les fluctuations en espace-temps pour ces modèles sont censées être non triviales. En dimension 1, on conjecture que l'exposant d'échelle dynamique est z = 3/2. Donc si on considère le changement d'échelle suivant: temps ∼tT, espace ∼t2/3X et fluctuations ∼t1/3, on s'attend à obtenir dans la limite t → ∞ un processus universel en espace-temps. Dans cet article on montre, sous des hypothèses assez générales, l'existence du phenomène de decorrélation lente dans des modèles de croissance, c'est-à-dire que les processus spatiaux limites pour des temps tT et tT + tν sont identiques, quelque soit ν < 1. On montre que ces hypothèses sont en particulier satisfaites par certains modèles de percolation de dernier passage, le modèle de croissance polynucléaire et le processus d'exclusion simple complètement/partiellement asymétrique. À l'aide de la decorrélation lente on peut ainsi étendre les résultats sur les fluctuations limites spatiales à des régions de l'espace-temps pour lequelles les fonctions de corrélations sont inconnues. L'approche utilisée dans cet article est basée sur des hypothèses minimales pour la decorrélation lente et donne une preuve simple, intuitive, qui s'applique à une large classe de modèles.
There has been much success in describing the limiting spatial fluctuations of growth models in the Kardar-Parisi-Zhang (KPZ) universality class. A proper rescaling of time should introduce a non-trivial temporal dimension to these limiting fluctuations. In one-dimension, the KPZ class has the dynamical scaling exponent z = 3/2, that means one should find a universal space-time limiting process under the scaling of time as tT, space like t2/3X and fluctuations like t1/3 as t → ∞. In this paper we provide evidence for this belief. We prove that under certain hypotheses, growth models display temporal slow decorrelation. That is to say that in the scalings above, the limiting spatial process for times tT and tT + tν are identical, for any ν < 1. The hypotheses are known to be satisfied for certain last passage percolation models, the polynuclear growth model, and the totally/partially asymmetric simple exclusion process. Using slow decorrelation we may extend known fluctuation limit results to space-time regions where correlation functions are unknown. The approach we develop requires the minimal expected hypotheses for slow decorrelation to hold and provides a simple and intuitive proof which applies to a wide variety of models.
Mots clés : asymmetric simple exclusion process, interacting particle systems, last passage percolation, directed polymers, KPZ
@article{AIHPB_2012__48_1_134_0, author = {Corwin, Ivan and Ferrari, Patrik L. and P\'ech\'e, Sandrine}, title = {Universality of slow decorrelation in {KPZ} growth}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {134--150}, publisher = {Gauthier-Villars}, volume = {48}, number = {1}, year = {2012}, doi = {10.1214/11-AIHP440}, mrnumber = {2919201}, zbl = {1247.82041}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP440/} }
TY - JOUR AU - Corwin, Ivan AU - Ferrari, Patrik L. AU - Péché, Sandrine TI - Universality of slow decorrelation in KPZ growth JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2012 SP - 134 EP - 150 VL - 48 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP440/ DO - 10.1214/11-AIHP440 LA - en ID - AIHPB_2012__48_1_134_0 ER -
%0 Journal Article %A Corwin, Ivan %A Ferrari, Patrik L. %A Péché, Sandrine %T Universality of slow decorrelation in KPZ growth %J Annales de l'I.H.P. Probabilités et statistiques %D 2012 %P 134-150 %V 48 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP440/ %R 10.1214/11-AIHP440 %G en %F AIHPB_2012__48_1_134_0
Corwin, Ivan; Ferrari, Patrik L.; Péché, Sandrine. Universality of slow decorrelation in KPZ growth. Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 1, pp. 134-150. doi : 10.1214/11-AIHP440. http://archive.numdam.org/articles/10.1214/11-AIHP440/
[1] Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Comm. Pure Appl. Math. 64 (2011) 466-537. | MR | Zbl
, and .[2] Painlevé formulas of the limiting distributions for nonnull complex sample covariance matrices. Duke Math. J. 33 (2006) 205-235. | MR | Zbl
.[3] Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 (2005) 1643-1697. | MR | Zbl
, and .[4] Limit process of stationary TASEP near the characteristic line. Comm. Pure Appl. Math. 63 (2010) 1017-1070. | MR | Zbl
, and .[5] Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100 (2000) 523-541. | MR | Zbl
and .[6] Current fluctuations for TASEP: A proof of the Prähofer-Spohn conjecture. Ann. Probab. 39 (2011) 104-138. | MR | Zbl
and .[7] Stochastic burgers and KPZ equations from particle systems. Comm. Math. Phys. 183 (1997) 571-607. | MR | Zbl
and .[8] Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13 (2008) 1380-1418. | MR | Zbl
and .[9] Fluctuations in the discrete TASEP with periodic initial configurations and the Airy1process. Int. Math. Res. Papers 1 (2007) rpm002. | Zbl
, and .[10] Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007) 1055-1080. | MR | Zbl
, , and .[11] Transition between Airy1 and Airy2 processes and TASEP fluctuations. Comm. Pure Appl. Math. 61 (2008) 1603-1629. | MR | Zbl
, and .[12] Large time asymptotics of growth models on space-like paths II: PNG and parallel TASEP. Comm. Math. Phys. 283 (2008) 417-449. | MR | Zbl
, and .[13] Two speed TASEP. J. Stat. Phys. 137 (2009) 936-977. | MR | Zbl
, and .[14] Airy kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132 (2008) 275-290. | MR | Zbl
and .[15] Limit processes for TASEP with shocks and rarefaction fans. J. Stat. Phys. 140 (2010) 232-267. | MR | Zbl
, and .[16] Universal distribution of fluctuations at the edge of the rarefaction fan. Available at arXiv:1006.1338.
and .[17] Renormalization fixed point of the KPZ universality class. Unpublished manuscript. Available at arXiv:1103.3422.
and .[18] Partial Differential Equations, 2nd edition. Grad. Stud. Math. 19. Amer. Math. Soc., Providence, RI, 2010. | Zbl
.[19] Slow decorrelations in KPZ growth. J. Stat. Mech. Theory Exp. 2008 (2008) P07022.
.[20] From interacting particle systems to random matrices. J. Stat. Mech. Theory Exp. 2010 (2010) P10016. | MR
.[21] Fluctuations of the one-dimensional polynuclear growth model with external sources. Nuclear Phys. B 699 (2004) 503-544. | MR | Zbl
and .[22] Dynamical properties of a tagged particle in the totally asymmetric simple exclusion process with the step-type initial condition. J. Stat. Phys. 128 (2007) 799-846. | MR | Zbl
and .[23] Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437-476. | MR | Zbl
.[24] Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 (2003) 277-329. | MR | Zbl
.[25] Persistence of Kardar-Parisi-Zhang interfaces. Europhys. Lett. 45 (1999) 20-25.
and .[26] Dynamic scaling of growth interfaces. Phys. Rev. Lett. 56 (1986) 889-892. | Zbl
, and .[27] Persistence exponents for fluctuating interfaces. Phys. Rev. E 56 (1997) 2702.
, , , , and .[28] Kinetic roughening of growning surfaces. In Solids Far From Equilibrium. C. Godrèche (Ed.). Cambridge Univ. Press, Cambridge, 1991.
and .[29] Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin, 1999. | MR | Zbl
.[30] Interacting Particle Systems. Springer, Berlin, 2005. Reprint of 1985 original edition. | MR | Zbl
.[31] Current fluctuations for the totally asymmetric simple exclusion process. In In and Out of Equilibrium 185-204. Progr. Probab. 51. Birkhäuser, Boston, MA, 2002. | MR | Zbl
and .[32] Scale invariance of the PNG droplet and the Airy process. J. Stat. Phys. 108 (2002) 1071-1106. | MR | Zbl
and .[33] Non-equilibrium behavior of a many particle process: Density profile and the local equilibrium. Z. Wahrsch. Verw. Gebiete 58 (1981) 41-53. | MR | Zbl
.[34] Universality of the one-dimensional KPZ equation. Phys. Rev. Lett. 104 (2010) 230602.
and .[35] Scaling for a one-dimensional directed polymer with constrained endpoints. Available at arXiv:0911.2446.
.[36] Hydrodyanamic scaling, convex duality and asymptotic shapes of growth models. Markov Process. Related Fields 4 (1998) 1-26. | MR | Zbl
.[37] Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1994) 151-174. | MR | Zbl
and .[38] Integral formulas for the asymmetric simple exclusion process. Comm. Math. Phys. 279 (2008) 815-844. | MR | Zbl
and .[39] A Fredholm determinant representation in ASEP. J. Stat. Phys. 132 (2008) 291-300. | MR | Zbl
and .[40] Asymptotics in ASEP with step initial condition. Comm. Math. Phys. 290 (2009) 129-154. | MR | Zbl
and .[41] Total current fluctuations in the asymmetric simple exclusion processes. J. Math. Phys. 50 (2009) 095204. | MR | Zbl
and .[42] On ASEP with step Bernoulli initial condition. J. Stat. Phys. 137 (2009) 825-838. | MR | Zbl
and .Cité par Sources :