In this paper, we study optimal transportation problems for multifractal random measures. Since these measures are much less regular than optimal transportation theory requires, we introduce a new notion of transportation which is intuitively some kind of multistep transportation. Applications are given for construction of multifractal random changes of times and to the existence of random metrics, the volume forms of which coincide with the multifractal random measures.
Dans ce papier, nous étudions des problèmes de transport optimal pour des mesures aléatoires multifractales. Puisque ces mesures sont beaucoup moins régulières que ce que la théorie requiert habituellement, nous introduisons une nouvelle notion de transport qui peut être vue intuitivement comme du transport à étapes multiples. En application, nous construisons des changements de temps multifractals et nous établissons l'existence de métriques aléatoires pour lesquelles les formes volume sont des mesures aléatoires multifractales.
Keywords: random measures, multifractal processes, optimal transportation, random metric
@article{AIHPB_2013__49_1_119_0, author = {Rhodes, R\'emi and Vargas, Vincent}, title = {Optimal transportation for multifractal random measures and applications}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {119--137}, publisher = {Gauthier-Villars}, volume = {49}, number = {1}, year = {2013}, doi = {10.1214/11-AIHP443}, mrnumber = {3060150}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP443/} }
TY - JOUR AU - Rhodes, Rémi AU - Vargas, Vincent TI - Optimal transportation for multifractal random measures and applications JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 119 EP - 137 VL - 49 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP443/ DO - 10.1214/11-AIHP443 LA - en ID - AIHPB_2013__49_1_119_0 ER -
%0 Journal Article %A Rhodes, Rémi %A Vargas, Vincent %T Optimal transportation for multifractal random measures and applications %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 119-137 %V 49 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP443/ %R 10.1214/11-AIHP443 %G en %F AIHPB_2013__49_1_119_0
Rhodes, Rémi; Vargas, Vincent. Optimal transportation for multifractal random measures and applications. Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 1, pp. 119-137. doi : 10.1214/11-AIHP443. http://archive.numdam.org/articles/10.1214/11-AIHP443/
[1] Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 (2003) 449-475. | MR | Zbl
and .[2] KPZ in one dimensional random geometry of multiplicative cascades. Comm. Math. Phys. 289 (2009) 653-662. | MR | Zbl
and .[3] Liouville quantum gravity and KPZ. Invent. Math. 185 (2011) 333-393. | MR | Zbl
and .[4] Sur le chaos de Lévy d’indice . Ann. Sci. Math. Québec 21 (1997) 53-66. | Zbl
.[5] Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9 (1985) 105-150. | MR | Zbl
.[6] KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15 (2011) 358-371. | Numdam | MR | Zbl
and .[7] Multidimensional multifractal random measures. Electron. J. Probab. 15 (2010) 241-258. | MR | Zbl
and .[8] Optimal Transport, Old and New. Grundlehren Math. Wiss. 338. Springer, Berlin. | MR | Zbl
.[9] Topics in Optimal Transportations. Grad. Stud. Math. 58. Amer. Math. Soc., Providence, RI, 2003. | MR | Zbl
.[10] Multiplicative cascades: Dimension spectra and dependence. J. Fourier Anal. Appl. (Special Issue: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993)) (1995) 589-609. | MR | Zbl
and .Cited by Sources: