Ce papier traite du comportement en temps court d’un processus de Lévy . En particulier, nous étudions la stabilité des temps et auxquels , partant de , quitte pour la première fois les domaines (sortie unilatérale), ou (sortie bilatérale), , quand . Nous déterminons si ces temps de passage se comportent ou non comme des fonctions déterministes selon différents modes de convergence : en probabilité, presque sûrement et dans . Dans de nombreux cas, ceci est équivalent à la stabilité du processus . Le problème analogue à temps grand est aussi discuté.
This paper is concerned with the small time behaviour of a Lévy process . In particular, we investigate the stabilities of the times, and , at which , started with , first leaves the space-time regions (one-sided exit), or (two-sided exit), , as . Thus essentially we determine whether or not these passage times behave like deterministic functions in the sense of different modes of convergence; specifically convergence in probability, almost surely and in . In many instances these are seen to be equivalent to relative stability of the process itself. The analogous large time problem is also discussed.
Mots-clés : Lévy process, passage times across power law boundaries, relative stability, overshoot, random walks
@article{AIHPB_2013__49_1_208_0, author = {Griffin, Philip S. and Maller, Ross A.}, title = {Small and large time stability of the time taken for a {L\'evy} process to cross curved boundaries}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {208--235}, publisher = {Gauthier-Villars}, volume = {49}, number = {1}, year = {2013}, doi = {10.1214/11-AIHP449}, mrnumber = {3060154}, zbl = {1267.60053}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP449/} }
TY - JOUR AU - Griffin, Philip S. AU - Maller, Ross A. TI - Small and large time stability of the time taken for a Lévy process to cross curved boundaries JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 208 EP - 235 VL - 49 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP449/ DO - 10.1214/11-AIHP449 LA - en ID - AIHPB_2013__49_1_208_0 ER -
%0 Journal Article %A Griffin, Philip S. %A Maller, Ross A. %T Small and large time stability of the time taken for a Lévy process to cross curved boundaries %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 208-235 %V 49 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP449/ %R 10.1214/11-AIHP449 %G en %F AIHPB_2013__49_1_208_0
Griffin, Philip S.; Maller, Ross A. Small and large time stability of the time taken for a Lévy process to cross curved boundaries. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 1, pp. 208-235. doi : 10.1214/11-AIHP449. http://archive.numdam.org/articles/10.1214/11-AIHP449/
[1] Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
.[2] Passage of Lévy processes across power law boundaries at small times. Ann. Probab. 36 (2008) 160-197. | MR | Zbl
, and .[3] Regular Variation. Cambridge Univ. Press, Cambridge, 1987. | MR | Zbl
, and .[4] Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10 (1961) 492-516. | MR | Zbl
and .[5] Fluctuation Theory for Lévy Processes. Lecture Notes in Math. 1897. Springer, Berlin, 2005. | Zbl
.[6] Overshoots over curved boundaries. Adv. in Appl. Probab. 35 (2003) 417-448. | MR | Zbl
and .[7] Overshoots over curved boundaries II. Adv. in Appl. Probab. 36 (2004) 1148-1174. | MR | Zbl
and .[8] Random walks crossing curved boundaries: Functional limit theorems, stability and asymptotic distributions for exit times and positions. Adv. in Appl. Probab. 32 (2000) 1117-1149. | MR | Zbl
and .[9] Stability and attraction to normality for Lévy processes at zero and infinity. J. Theoret. Probab. 15 (2002) 751-792. | MR | Zbl
and .[10] Moments of passage times for Lévy processes. Ann. Inst. Henri Poincaré Probab. Stat. 40 (2004) 279-297. | Numdam | MR | Zbl
and .[11] Probability: Theory and Examples, 3rd edition. Brooks/Cole-Thomsom Learning, Belmont, 2005. | MR | Zbl
.[12] Gaps in the range of nearly increasing processes with stationary independent increments. Z. Wahrsch. Verw. Gebiete 62 (1983) 449-463. | MR | Zbl
.[13] Stability of the exit time for Lévy processes. Adv. in Appl. Probab. 43 (2011) 712-734. | MR | Zbl
and .[14] Foundations of Modern Probability. Springer, Berlin, 2001. | MR | Zbl
.[15] Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. | MR
.[16] Small-time versions of Strassen's law for Lévy processes. Proc. Lond. Math. Soc. 98 (2009) 531-558. | MR | Zbl
.[17] The growth of random walks and Lévy processes. Ann. Probab. 9 (1981) 948-956. | MR | Zbl
.[18] Some one-sided stopping rules. Ann. Math. Statist. 38 (1967) 1641-1646. | MR | Zbl
.Cité par Sources :