We study the distribution of the outliers in the spectrum of finite rank deformations of Wigner random matrices under the assumption that the absolute values of the off-diagonal matrix entries have uniformly bounded fifth moment and the absolute values of the diagonal entries have uniformly bounded third moment. Using our recent results on the fluctuation of resolvent entries (On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries, Unpublished manuscript; Fluctuations of matrix entries of regular functions of Wigner matrices, Unpublished manuscript) and ideas from (Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices, Unpublished manuscript), we extend the results by Capitaine, Donati-Martin, and Féral (Ann. Probab. 37 (2009) 1-47; Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 107-133).
Nous étudions la distribution des valeurs propres qui sortent de l'amas du spectre de matrices de Wigner deformées par une matrice de rang fini sous l'hypothèse que les valeurs absolues des éléments non diagonaux aient un moment d'ordre cinq uniformément borné et que valeurs absolues des éléments diagonaux aient un moment d'ordre trois uniformément borné. En utilisant des travaux récents (On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries, Unpublished manuscript; Fluctuations of matrix entries of regular functions of Wigner matrices, Unpublished manuscript) et des idées de (Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices, Unpublished manuscript), nous étendons les résultats de Capitaine, Donati-Martin et Féral (Ann. Probab. 37 (2009) 1-47; Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 107-133).
Keywords: random matrices, ouliers in the spectrum, finite rank deformations
@article{AIHPB_2013__49_1_64_0, author = {Pizzo, Alessandro and Renfrew, David and Soshnikov, Alexander}, title = {On finite rank deformations of {Wigner} matrices}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {64--94}, publisher = {Gauthier-Villars}, volume = {49}, number = {1}, year = {2013}, doi = {10.1214/11-AIHP459}, mrnumber = {3060148}, zbl = {1278.60014}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP459/} }
TY - JOUR AU - Pizzo, Alessandro AU - Renfrew, David AU - Soshnikov, Alexander TI - On finite rank deformations of Wigner matrices JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 64 EP - 94 VL - 49 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP459/ DO - 10.1214/11-AIHP459 LA - en ID - AIHPB_2013__49_1_64_0 ER -
%0 Journal Article %A Pizzo, Alessandro %A Renfrew, David %A Soshnikov, Alexander %T On finite rank deformations of Wigner matrices %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 64-94 %V 49 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP459/ %R 10.1214/11-AIHP459 %G en %F AIHPB_2013__49_1_64_0
Pizzo, Alessandro; Renfrew, David; Soshnikov, Alexander. On finite rank deformations of Wigner matrices. Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 1, pp. 64-94. doi : 10.1214/11-AIHP459. http://archive.numdam.org/articles/10.1214/11-AIHP459/
[1] An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, New York, 2010. | MR | Zbl
, and .[2] Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica 9 (1999) 611-677. | MR | Zbl
.[3] Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 447-474. | Numdam | MR | Zbl
and .[4] Necessary and sufficient conditions for the almost sure convergence of the largest eigenvalue of Wigner matrices. Ann. Probab. 16 (1988) 1729-1741. | MR | Zbl
and .[5] Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 97 (2006) 1382-1408. | MR | Zbl
and .[6] Phase transition of the largest eigenvalue for non-null complex sample covariance matrices. Ann. Probab. 33 (2005) 1643-1697. | MR | Zbl
, and .[7] Wigner matrices. In Oxford Handbook on Random Matrix Theory. G. Akemann, J. Baik and P. Di Francesco (Eds). Oxford Univ. Press, New York, 2011. | MR | Zbl
and .[8] The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Unpublished manuscript. Available at arXiv:0910.2120v3. | Zbl
and .[9] Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. Unpublished manuscript. Available at arXiv:1009.0145. | MR | Zbl
, and .[10] Large deviations of the extreme eigenvalues of random deformations of matrices. Unpublished manuscript. Available at arXiv:1009.0135v2. | MR | Zbl
, and .[11] The largest eigenvalue of finite rank deformation of large Wigner matrices: Convergence and non universality of the fluctuations. Ann. Probab. 37 (2009) 1-47. | MR | Zbl
, and .[12] Central limit theorems for eigenvalues of deformations of Wigner matrices. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 107-133. | Numdam | MR | Zbl
, and .[13] D. Féral and M. Février. Free convolution with a semi-circular distribution and eigenvalues of spiked deformations of Wigner matrices. Unpublished manuscript. Available at arXiv:1006.3684. | Zbl
,[14] Analysis of nonsmooth symmetric-matrix-valued functions with applications to semidefinite complementary problems. SIAM J. Optim. 13 (2003) 960-985. | MR | Zbl
, and .[15] The functional calculus. J. Lond. Math. Soc. 52 (1995) 166-176. | MR | Zbl
.[16] Probability. Theory and Examples, 4th edition. Cambridge Univ. Press, New York, 2010. | MR | Zbl
.[17] Rigidity of eigenvalues of generalized Wigner matrices. Unpublished manuscript. Available at arXiv:1007.4652. | MR | Zbl
, and .[18] The largest eigenvalue of rank one deformation of large Wigner matrices. Comm. Math. Phys. 272 (2007) 185-228. | MR | Zbl
and .[19] The eigenvalues of random symmetric matrices. Combinatorica 1 (1981) 233-241. | Zbl
and .[20] Lectures on logarithmic Sobolev inequalities. In Seminaire de Probabilités XXXVI. Lecture Notes in Math. 1801. Springer, Paris, 2003. | Numdam | MR | Zbl
and .[21] Equation de Schrödinger avec champ magnetique et equation de Harper. In Schrödinger Operators 118-197. H. Holden and A. Jensen (Eds). Lecture Notes in Physics 345. Springer, Berlin, 1989. | MR | Zbl
and .[22] Universality for certain Hermitian Wigner matrices under weak moment conditions. Unpublished manuscript. Available at arXiv:0910.4467. | Numdam | MR | Zbl
.[23] Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37 (1996) 5033-5060. | MR | Zbl
, and .[24] Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles. Electron. J. Probab. 12 (2007) 1131-1150. | MR | Zbl
.[25] On fluctuations of matrix entries of regular functions of Wigner matrices with non-identically distributed entries. Unpublished manuscript. Available at arXiv:1104.1663v3. | MR | Zbl
, and .[26] Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica 17 (2007) 1617-1642. | MR | Zbl
.[27] The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields 134 (2006) 127-173. | MR | Zbl
.[28] Fluctuations of matrix entries of regular functions of Wigner matrices. Unpublished manuscript. Available at arXiv:1103.1170v3. | MR | Zbl
, and .[29] Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York, 1978. | MR | Zbl
and .[30] Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices. Zh. Mat. Fiz. Anal. Geom. 7 (2011) 176-192, 197, 199. | MR | Zbl
.[31] Letter from March 1, 2011.
.[32] Outliers in the spectrum of iid matrices with bounded rank perturbations. Unpublished manuscript. Available at arXiv:1012.4818v2. | MR | Zbl
.Cited by Sources: