Random hysteresis loops
Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 2, pp. 307-339.

L’hystérésis dynamique est un phénomène qu’on observe dans les systèmes ferromagnétiques au-dessous de la temperature critique, en réponse à des variations adiabatiques du champ magnétique extérieur. Nous étudions le problème dans le contexte du modéle d’Ising de champ moyen avec la dynamique de Glauber, en montrant que, pour des fréquences d’oscillations du champ magnétique d’ordre de N -2/3 , avec N la taille du système, la boucle d’hystérésis « critique » devient aléatoire.

Dynamical hysteresis is a phenomenon which arises in ferromagnetic systems below the critical temperature as a response to adiabatic variations of the external magnetic field. We study the problem in the context of the mean-field Ising model with Glauber dynamics, proving that for frequencies of the magnetic field oscillations of order N -2/3 , N the size of the system, the “critical” hysteresis loop becomes random.

DOI : 10.1214/11-AIHP461
Classification : 82C20
Mots-clés : hysteresis, Ising, mean field Glauber dynamics, macroscopic fluctuations
@article{AIHPB_2013__49_2_307_0,
     author = {Carinci, Gioia},
     title = {Random hysteresis loops},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {307--339},
     publisher = {Gauthier-Villars},
     volume = {49},
     number = {2},
     year = {2013},
     doi = {10.1214/11-AIHP461},
     mrnumber = {3088372},
     zbl = {1277.82035},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/11-AIHP461/}
}
TY  - JOUR
AU  - Carinci, Gioia
TI  - Random hysteresis loops
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2013
SP  - 307
EP  - 339
VL  - 49
IS  - 2
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/11-AIHP461/
DO  - 10.1214/11-AIHP461
LA  - en
ID  - AIHPB_2013__49_2_307_0
ER  - 
%0 Journal Article
%A Carinci, Gioia
%T Random hysteresis loops
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2013
%P 307-339
%V 49
%N 2
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/11-AIHP461/
%R 10.1214/11-AIHP461
%G en
%F AIHPB_2013__49_2_307_0
Carinci, Gioia. Random hysteresis loops. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 2, pp. 307-339. doi : 10.1214/11-AIHP461. http://archive.numdam.org/articles/10.1214/11-AIHP461/

[1] M. Acharyya and B. K. Chakrabarti. Response of Ising systems to oscillating and pulsed fields: Hysteresis, ac, and pulse susceptibility. Phys. Rev. B 52 (1995) 6550-6568.

[2] N. Berglund and B. Gentz. Pathwise description of dynamic pitchfork bifurcations with additive noise. Probab. Theory Related Fields 122 (2002) 341-388. | MR | Zbl

[3] N. Berglund and B. Gentz. A sample-paths approach to noise-induced synchronization: Stochastic resonance in a double-well potential. Ann. Appl. Probab. 12 (2002) 1419-1470. | MR | Zbl

[4] N. Berglund and B. Gentz. The effect of additive noise on dynamical hysteresis. Nonlinearity 15 (2002) 605-632. | MR | Zbl

[5] G. Bertotti. Hysteresis in Magnetism. Academic Press, Boston, 1998.

[6] G. Bertotti and I. D. Mayergoyz. The Science of Hysteresis, Mathematical Modeling and Applications, Vol. I. Elsevier, Amsterdam, 2006. | MR | Zbl

[7] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1999. | MR | Zbl

[8] G. Carinci. Stochastic effects in critical regimes. Ph.D. thesis, Università degli Studi dell'Aquila, 2010.

[9] P. Jung, G. Gray, R. Roy and P. Mandel. Scaling law for dynamical hysteresis. Phys. Rev. Lett. 65 (1990) 1873-1876.

[10] G. Korniss, M. A. Novotny, P. A. Rikvold and C. J. White. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Phys. Rev. E 63 (2000) 016120.

[11] G. Korniss, M. A. Novotny and P. A. Rikvold. Absence of first-order transition and tricritical point in the dynamic phase diagram of a spatially extended bistable system in an oscillating field. Phys. Rev. E 66 (2002) 056127. | MR

[12] H. Landau and L. A. Shepp. On the supremum of a Gaussian process. Sankhya A 32 (1970) 369-378. | MR | Zbl

[13] W. V. Li. Small deviations for Gaussian Markov processes under the sup-norm. J. Theoret. Probab. 12 (1999) 971-984. | MR | Zbl

[14] M. B. Marcus and L. A. Shepp. Sample behaviour of Gaussian processes. In Proceedings of the 6th Berkeley Symposium on Mathematics, Statistic and Probability, Vol. 2 423-441. Univ. California Press, Berkeley, CA, 1972. | MR | Zbl

[15] M. A. Novotny, P. A. Rikvold and S. W. Sides. Stochastic hysteresis and resonance in a kinetic Ising system. Phys. Rev. E 57 (1998) 6512-6533.

[16] M. A. Novotny, P. A. Rikvold and S. W. Sides. Kinetic Ising model in an oscillating field: Finite-size scaling at the dynamic phase transition. Phys. Rev. Lett. 81 (1998) 834-837.

[17] M. A. Novotny, P. A. Rikvold and S. W. Sides. Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition. Phys. Rev. E 59 (1999) 2710-2729.

[18] D. Pollard. Convergence of Stochastic Processes. Springer, New York, 1984. | MR | Zbl

[19] E. Presutti. Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer, Berlin, 2009. | MR | Zbl

[20] M. Rao, H. R. Krishnamurthy and R. Pandit. Magnetic hysteresis in two model spin systems. Phys. Rev. B 42-1 (1990) 856-884.

[21] T. Tomé and M. J. De Oliveira. Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field. Phys. Rev. A 41 (1990) 4251-4254.

[22] A. Visintin. Differential Models of Hysteresis. Springer, Berlin, 1994. | MR | Zbl

[23] H. Zhu, S. Dong and J. M. Liu. Hysteresis loop area of the Ising model. Phys. Rev. B 70 (2004) 132403.

Cité par Sources :