An inequality of Brascamp and Lieb provides a bound on the covariance of two functions with respect to log-concave measures. The bound estimates the covariance by the product of the norms of the gradients of the functions, where the magnitude of the gradient is computed using an inner product given by the inverse Hessian matrix of the potential of the log-concave measure. Menz and Otto [Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential. (2011) Preprint] proved a variant of this with the two norms replaced by and norms, but only for . We prove a generalization of both by extending these inequalities to and norms and on , for any . We also prove an inequality for integrals of divided differences of functions in terms of integrals of their gradients.
Une inégalité de Brascamp et Lieb donne une estimation sur la covariance entre deux fonctions par rapport à une mesure log-concave, qui est bornée par le produit des normes des gradients des fonctions, où l’amplitude du gradient est calculée en utilisant un produit scalaire égal à l’inverse de la matrice Hessienne du potentiel de la mesure log-concave. Menz et Otto [Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential. (2011) Preprint] ont prouvé une variante de ce résultat où les normes sont remplacées par des normes et , mais seulement dans . Nous prouvons une généralisation de ces deux résultats, avec une extension de ces inégalités à des normes et dans , pour tout . Nous prouvons aussi une inégalité pour des intégrales de différences divisées de fonctions à l’aide des intégrales de leurs gradients.
Keywords: convexity, log-concavity, poincaré inequality
@article{AIHPB_2013__49_1_1_0, author = {Carlen, Eric A. and Cordero-Erausquin, Dario and Lieb, Elliott H.}, title = {Asymmetric covariance estimates of {Brascamp-Lieb} type and related inequalities for log-concave measures}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1--12}, publisher = {Gauthier-Villars}, volume = {49}, number = {1}, year = {2013}, doi = {10.1214/11-AIHP462}, mrnumber = {3060145}, zbl = {1270.26016}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP462/} }
TY - JOUR AU - Carlen, Eric A. AU - Cordero-Erausquin, Dario AU - Lieb, Elliott H. TI - Asymmetric covariance estimates of Brascamp-Lieb type and related inequalities for log-concave measures JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 1 EP - 12 VL - 49 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP462/ DO - 10.1214/11-AIHP462 LA - en ID - AIHPB_2013__49_1_1_0 ER -
%0 Journal Article %A Carlen, Eric A. %A Cordero-Erausquin, Dario %A Lieb, Elliott H. %T Asymmetric covariance estimates of Brascamp-Lieb type and related inequalities for log-concave measures %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 1-12 %V 49 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP462/ %R 10.1214/11-AIHP462 %G en %F AIHPB_2013__49_1_1_0
Carlen, Eric A.; Cordero-Erausquin, Dario; Lieb, Elliott H. Asymmetric covariance estimates of Brascamp-Lieb type and related inequalities for log-concave measures. Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 1, pp. 1-12. doi : 10.1214/11-AIHP462. http://archive.numdam.org/articles/10.1214/11-AIHP462/
[1] Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27 (1999) 1903-1921. | MR | Zbl
.[2] From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10 (2000) 1028-1052. | MR | Zbl
and .[3] The log-Sobolev inequalities for unbounded spin systems. J. Funct. Anal. 166 (1999) 168-178. | MR | Zbl
and .[4] On extensions of the Brunn-Minkovski and Prékopa-Leindler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 (1976) 366-389. | MR | Zbl
and .[5] On Berndtsson's generalization of Prékopa's theorem. Math. Z. 249 (2005) 401-410. | MR | Zbl
.[6] A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 302-351. | Numdam | MR | Zbl
, , and .[7] Kahane-Khinchine type inequalities for negative exponent. Mathematika 46 (1999) 165-173. | MR | Zbl
.[8] estimates and existence theorems for the operator. Acta Math. 113 (1965) 89-152. | MR | Zbl
.[9] Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 (1995) 541-559. | MR | Zbl
, and .[10] Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems. Ann. Inst. Henri Poincaré Prob. Stat. 38 (2002) 739-777. | EuDML | Numdam | MR | Zbl
, and .[11] Analysis, 2nd edition. Amer. Math. Soc., Providence, RI, 2001. | MR | Zbl
and .[12] Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential. Preprint, 2011. | MR | Zbl
and .[13] A new criterion for the logarithmic Sobolev inequality and two applications. J. Funct. Anal. 243 (2007) 121-157. | MR | Zbl
and .Cited by Sources: