Nous considérons la solution d’une équation différentielle stochastique, dirigée par un mouvement brownien linéaire standard, dont le terme de dérive varie avec le temps . Ce processus peut être vu comme un mouvement brownien évoluant dans un potentiel dépendant du temps, éventuellement singulier. Nous montrons des résultats d’existence et d’unicité et nous étudions le comportement asymptotique de la solution. Les propriétés de récurrence ou de transience de cette diffusion sont décrites en fonction des paramètres , et , et nous donnons les vitesses de transience et d’explosion. Des résultats de convergence en loi et des lois de type logarithme itéré sont également obtenus.
Let us consider a solution of a one-dimensional stochastic differential equation driven by a standard Brownian motion with time-inhomogeneous drift coefficient . This process can be viewed as a Brownian motion evolving in a potential, possibly singular, depending on time. We prove results on the existence and uniqueness of solution, study its asymptotic behaviour and made a precise description, in terms of parameters , and , of the recurrence, transience and convergence. More precisely, asymptotic distributions, iterated logarithm type laws and rates of transience and explosion are proved for such processes.
Mots clés : time-inhomogeneous diffusions, time dependent potential, singular stochastic differential equations, explosion times, scaling transformations, change of time, recurrence and transience, iterated logarithm type laws, asymptotic distributions
@article{AIHPB_2013__49_1_182_0, author = {Gradinaru, Mihai and Offret, Yoann}, title = {Existence and asymptotic behaviour of some time-inhomogeneous diffusions}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {182--207}, publisher = {Gauthier-Villars}, volume = {49}, number = {1}, year = {2013}, doi = {10.1214/11-AIHP469}, mrnumber = {3060153}, zbl = {1267.60091}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP469/} }
TY - JOUR AU - Gradinaru, Mihai AU - Offret, Yoann TI - Existence and asymptotic behaviour of some time-inhomogeneous diffusions JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 182 EP - 207 VL - 49 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP469/ DO - 10.1214/11-AIHP469 LA - en ID - AIHPB_2013__49_1_182_0 ER -
%0 Journal Article %A Gradinaru, Mihai %A Offret, Yoann %T Existence and asymptotic behaviour of some time-inhomogeneous diffusions %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 182-207 %V 49 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP469/ %R 10.1214/11-AIHP469 %G en %F AIHPB_2013__49_1_182_0
Gradinaru, Mihai; Offret, Yoann. Existence and asymptotic behaviour of some time-inhomogeneous diffusions. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 1, pp. 182-207. doi : 10.1214/11-AIHP469. http://archive.numdam.org/articles/10.1214/11-AIHP469/
[1] Polynomial asymptotic stability of damped stochastic differential equations. Electron. J. Qual. Theory Differ. Equ. 2 (2004) 1-33. | MR | Zbl
and .[2] Solutions of stochastic differential equations obeying the law of the iterated logarithm, with applications to financial markets. Electron. J. Probab. 14 (2009) 912-959. | MR | Zbl
and .[3] Recurrence and ergodicity of diffusions. J. Multivariate Anal. 12 (1982) 95-122. | MR | Zbl
and .[4] Singular Stochastic Differential Equations. Lecture Notes in Mathematics 1858. Springer, Berlin, 2004. | MR | Zbl
and .[5] A sharper form of the Borel-Cantelli lemma and the strong law. Ann. Math. Statist. 36 (1965) 800-807. | MR | Zbl
and .[6] Bernard Friedman's urn. Ann. Math. Statist. 36 (1965) 956-970. | MR | Zbl
.[7] Abel transform and integrals of Bessel local times. Ann. Inst. Henri Poincaré Probab. Stat. 35 (1999) 531-572. | Numdam | MR | Zbl
, , and .[8] Stochastic Differential Equations. Springer, New York, 1991. | MR | Zbl
and .[9] Stochastic Stability of Differential Equations. Sitjthoff & Noordhoff, Alphen aan den Rijn, 1980. | Zbl
.[10] Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam, 1981. | MR | Zbl
and .[11] Foundation of Modern Probability, 3rd edition. Springer, New York, 2001. | MR | Zbl
.[12] On a one-parameter generalisation of the Brownian bridge and associated quadratic functionals. J. Theoret. Probab. 17 (2004) 1021-1029. | MR | Zbl
.[13] Urn-related random walk with drift . Electron. J. Probab. 13 (2008) 944-960. | MR | Zbl
and .[14] Proof of the law of iterated logarithm through diffusion equation. Ann. Inst. Statist. Math. 10 (1959) 21-28. | MR | Zbl
.[15] Remarks on non-explosion theorem for stochastic differential equations. Kodai Math. J. 5 (1982) 395-401. | MR | Zbl
.[16] Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin, 1999. | MR | Zbl
and .[17] Multidimensional Diffusion Process. Springer, Berlin, 1979. | MR | Zbl
and .Cité par Sources :