Soit
Let
Mots-clés : Stein's method, gaussian interpolation, last passage percolation on thin rectangles, Sherrington-Kirkpatrick model, Curie-Weiss model
@article{AIHPB_2013__49_2_529_0, author = {R\"ollin, Adrian}, title = {Stein's method in high dimensions with applications}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {529--549}, publisher = {Gauthier-Villars}, volume = {49}, number = {2}, year = {2013}, doi = {10.1214/11-AIHP473}, mrnumber = {3088380}, zbl = {1287.60043}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP473/} }
TY - JOUR AU - Röllin, Adrian TI - Stein's method in high dimensions with applications JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 529 EP - 549 VL - 49 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP473/ DO - 10.1214/11-AIHP473 LA - en ID - AIHPB_2013__49_2_529_0 ER -
%0 Journal Article %A Röllin, Adrian %T Stein's method in high dimensions with applications %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 529-549 %V 49 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP473/ %R 10.1214/11-AIHP473 %G en %F AIHPB_2013__49_2_529_0
Röllin, Adrian. Stein's method in high dimensions with applications. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 2, pp. 529-549. doi : 10.1214/11-AIHP473. http://archive.numdam.org/articles/10.1214/11-AIHP473/
[1] A GUE central limit theorem and universality of directed first and last passage site percolation. Int. Math. Res. Not. 2005 (2005) 325-337. | MR | Zbl
and .[2] A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory Ser. B 47 (1989) 125-145. | MR | Zbl
, and .[3] A universality property for last-passage percolation paths close to the axis. Electron. Commun. Probab. 10 (2005) 105-112 (electronic). | MR | Zbl
and .[4] Exact convergence rates in some martingale central limit theorems. Ann. Probab. 10 (1982) 672-688. | MR | Zbl
.[5] Universality in Sherrington-Kirkpatrick's spin glass model. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 215-222. | Numdam | MR | Zbl
and .[6] A simple invariance theorem. Preprint, 2005. Available at http://arxiv.org/abs/math.PR/0508213.
.[7] A generalization of the Lindeberg principle. Ann. Probab. 34 (2006) 2061-2076. | MR | Zbl
.[8] Multivariate normal approximation using exchangeable pairs. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008) 257-283. | MR | Zbl
and .[9] Non-normal approximation by Stein's method of exchangeable pairs with application to the Curie-Weiss model. Ann. Appl. Probab. 21 (2011) 464-483. | MR | Zbl
and .[10] Stein couplings for normal approximation. Preprint, 2010. Available at http://arxiv.org/abs/1003.6039.
and .[11] Some examples of normal approximations by Stein's method. In Random Discrete Structures (Minneapolis, MN, 1993) 25-44. IMA Vol. Math. Appl. 76. Springer, New York, 1996. | MR | Zbl
and .[12] Stein's method for dependent random variables occurring in statistical mechanics. Electron. J. Probab. 15 (2010) 962-988. | MR | Zbl
and .[13] Bulk universality for generalized Wigner matrices. Preprint, 2010. Available at arxiv.org/abs/1001.3453. | MR | Zbl
, and .[14] Limit theorems for spectra of random matrices with martingale structure. Teor. Veroyatn. Primen. 51 (2006) 171-192. | MR | Zbl
and .[15] On moderate deviations for martingales. Ann. Probab. 25 (1997) 152-183. | MR | Zbl
.[16] Shape fluctuations and random matrices. Comm. Math. Phys. 209 (2000) 437-476. | MR | Zbl
.[17] Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys. 215 (2001) 683-705. | MR | Zbl
.[18] On Stein's method for multivariate normal approximation. In High Dimensional Probability V: The Luminy Volume 153-178. Inst. Math. Statist., Beachwood, OH, 2009. | MR | Zbl
.[19] Noise stability of functions with low influences: Invariance and optimality. Ann. of Math. 171 (2010) 295-341. | MR | Zbl
, and .[20] A multivariate CLT for decomposable random vectors with finite second moments. J. Theoret. Probab. 17 (2004) 573-603. | MR | Zbl
.[21] Multivariate normal approximation with Stein's method of exchangeable pairs under a general linearity condition. Ann. Probab. 37 (2009) 2150-2173. | MR | Zbl
and .[22] Some estimates for the rate of convergence in the CLT for martingales. II. Theory Probab. Appl. 44 (1999) 523-536. | MR | Zbl
and .
[23] A multivariate CLT for local dependence with
[24] Certain limit theorems for polynomials of degree two. Teor. Veroyatn. Primen. 18 (1973) 527-534. Actual title is “Some limit theorems for polynomials of degree two”. | MR | Zbl
.[25] The one-sided barrier problem for Gaussian noise. Bell System Tech. J. 41 (1962) 463-501. | MR
.[26] A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability Theory 583-602. Univ. California Press, Berkeley, CA, 1972. | MR | Zbl
.[27] A remark on a theorem of Chatterjee and last passage percolation. J. Phys. A 39 (2006) 8977-8981. | MR | Zbl
.[28] The Parisi formula. Ann. of Math. 163 (2006) 221-263. | MR | Zbl
.[29] Mean Field Models for Spin Glasses. Volume I. Springer-Verlag, Berlin, 2010. | MR | Zbl
.[30] Random matrices: universality of local eigenvalue statistics. Acta Math. 206 (2011) 127-204. | MR | Zbl
and .Cité par Sources :