La loi de Tracy-Widom est la limite de la plus grande valeur propre des ensembles de matrices aléatoires lorsque leur taille tend vers l’infini. Nous utilisons la représentation par l’opérateur stochastique d’Airy pour montrer que lorsque la queue de la loi de Tracy-Widom vérifie :
The Tracy-Widom distribution is the large dimensional limit of the top eigenvalue of random matrix ensembles. We use the stochastic Airy operator representation to show that as the tail of the Tracy-Widom distribution satisfies
Mots-clés : Tracy-Widom distribution, stochastic airy operator, beta ensembles
@article{AIHPB_2013__49_4_915_0, author = {Dumaz, Laure and Vir\'ag, B\'alint}, title = {The right tail exponent of the {Tracy-Widom} $\beta $ distribution}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {915--933}, publisher = {Gauthier-Villars}, volume = {49}, number = {4}, year = {2013}, doi = {10.1214/11-AIHP475}, mrnumber = {3127907}, zbl = {1278.60012}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/11-AIHP475/} }
TY - JOUR AU - Dumaz, Laure AU - Virág, Bálint TI - The right tail exponent of the Tracy-Widom $\beta $ distribution JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 915 EP - 933 VL - 49 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/11-AIHP475/ DO - 10.1214/11-AIHP475 LA - en ID - AIHPB_2013__49_4_915_0 ER -
%0 Journal Article %A Dumaz, Laure %A Virág, Bálint %T The right tail exponent of the Tracy-Widom $\beta $ distribution %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 915-933 %V 49 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/11-AIHP475/ %R 10.1214/11-AIHP475 %G en %F AIHPB_2013__49_4_915_0
Dumaz, Laure; Virág, Bálint. The right tail exponent of the Tracy-Widom $\beta $ distribution. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 4, pp. 915-933. doi : 10.1214/11-AIHP475. http://archive.numdam.org/articles/10.1214/11-AIHP475/
[1] Asymptotics of Tracy-Widom distribution functions. Preprint, 2006. Available at: http://www.cirm.univ-mrs.fr/videos/2006/exposes/28/Baik.pdf.
.[2] Large deviations of the maximal eigenvalue of random matrices. ArXiv e-prints, September 2010. | MR
, , and .[3] Topological expansion of beta-ensemble model and quantum algebraic geometry in the sectorwise approach. ArXiv e-prints, September 2010. | MR | Zbl
, and .[4] Some eigenvalue distribution functions of the Laguerre ensemble. J. Phys. A 29 (23) (1996) 7561-7579. | MR | Zbl
and .[5] Matrix models for beta ensembles. J. Math. Phys. 43 (11) (2002) 5830-5847. | MR | Zbl
and .[6] Statistical theory of the energy levels of complex systems. II. J. Math. Phys. 3 (1962) 157-165. | MR | Zbl
.[7] Log-Gases and Random Matrices. London Mathematical Society Monographs Series 34. Princeton Univ. Press, Princeton, NJ, 2010. | MR | Zbl
.[8] Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Amer. Math. Soc. 24 (2011) 919-944. | MR | Zbl
, and .[9] Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1) (1994) 151-174. | MR | Zbl
and .[10] On orthogonal and symplectic matrix ensembles. Comm. Math. Phys. 177 (3) (1996) 727-754. | MR
and .[11] Large gaps between random eigenvalues. Ann. Probab. 38 (3) (2010) 1263-1279. | MR
and .Cité par Sources :