Nous considérons une marche aléatoire unidimensionnelle en environnement aléatoire qui est transiente à gauche. Cette marche est modifiée par des cookies qui induisent une dérive vers la droite. Le nombre de cookies par site est i.i.d. et indépendant de l'environnement. Des critères pour la récurrence et la transience de la marche sont obtenus. Pour cela, nous utilisons des processus de branchement sous-critiques en environnement aléatoire avec immigration et nous formulons des critères de récurrence et de transience pour ces processus.
We consider a left-transient random walk in a random environment on that will be disturbed by cookies inducing a drift to the right of strength 1. The number of cookies per site is i.i.d. and independent of the environment. Criteria for recurrence and transience of the random walk are obtained. For this purpose we use subcritical branching processes in random environments with immigration and formulate criteria for recurrence and transience for these processes.
Mots-clés : excited random walk in a random environment, cookies of strength 1, recurrence, transience, subcritical branching process in a random environment with immigration
@article{AIHPB_2013__49_3_638_0, author = {Bauernschubert, Elisabeth}, title = {Perturbing transient random walk in a random environment with cookies of maximal strength}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {638--653}, publisher = {Gauthier-Villars}, volume = {49}, number = {3}, year = {2013}, doi = {10.1214/12-AIHP479}, mrnumber = {3112429}, zbl = {1274.60254}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/12-AIHP479/} }
TY - JOUR AU - Bauernschubert, Elisabeth TI - Perturbing transient random walk in a random environment with cookies of maximal strength JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 638 EP - 653 VL - 49 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/12-AIHP479/ DO - 10.1214/12-AIHP479 LA - en ID - AIHPB_2013__49_3_638_0 ER -
%0 Journal Article %A Bauernschubert, Elisabeth %T Perturbing transient random walk in a random environment with cookies of maximal strength %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 638-653 %V 49 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/12-AIHP479/ %R 10.1214/12-AIHP479 %G en %F AIHPB_2013__49_3_638_0
Bauernschubert, Elisabeth. Perturbing transient random walk in a random environment with cookies of maximal strength. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 3, pp. 638-653. doi : 10.1214/12-AIHP479. http://archive.numdam.org/articles/10.1214/12-AIHP479/
[1] Branching processes with random environments. II. Limit theorems. Ann. Math. Statist. 42 (1971) 1843-1858. | MR | Zbl
and .[2] On branching processes with random environments. I. Extinction probabilities. Ann. Math. Statist. 42 (1971) 1499-1520. | MR | Zbl
and .[3] Branching Processes. Die Grundlehren der mathematischen Wissenschaften 196. Springer, New York, 1972. | MR | Zbl
and .[4] On the speed of a cookie random walk. Probab. Theory Related Fields 141 (3-4) (2008) 625-645. | MR | Zbl
and .[5] Rate of growth of a transient cookie random walk. Electron. J. Probab. 13 (26) (2008) 811-851. | MR | Zbl
and .[6] Excited random walk. Electron. Commun. Probab. 8 (2003) 86-92 (electronic). | MR | Zbl
and .[7] Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, 1996. | MR | Zbl
.[8] Excited against the tide: A random walk with competing drifts. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 745-773. | Numdam | MR | Zbl
.[9] Ergodic behaviour of affine recursions i; criteria for recurrence and transience. Preprint, 1992. Available at http://www.mathematik.uni-muenchen.de/~kellerer/I.pdf.
.[10] Positively and negatively excited random walks on integers, with branching processes. Electron. J. Probab. 13 (64) (2008) 1952-1979. | MR | Zbl
and .[11] Stochastic Convergence, 2nd edition. Probability and Mathematical Statistics 30. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1975. | MR | Zbl
.[12] Limit theorems for the simple branching process allowing immigration. I. The case of finite offspring mean. Adv. in Appl. Probab. 11 (1) (1979) 31-62. | MR | Zbl
.[13] A note on multi-type cookie random walk on integers. Preprint, 2008. Available at http://arxiv.org/abs/0803.1664v2.
.[14] On branching processes in random environments. Ann. Math. Statist. 40 (1969) 814-827. | MR | Zbl
and .[15] Random walks in a random environment. Ann. Probab. 3 (1975) 1-31. | MR | Zbl
.[16] Recurrence properties of autoregressive processes with super-heavy-tailed innovations. J. Appl. Probab. 41 (3) (2004) 639-653. | MR | Zbl
and .[17] Random walks in random environment. In Lectures on Probability Theory and Statistics 189-312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. | MR | Zbl
.[18] Multi-excited random walks on integers. Probab. Theory Related Fields 133 (1) (2005) 98-122. | MR | Zbl
.[19] Recurrence and transience of excited random walks on and strips. Electron. Commun. Probab. 11 (2006) 118-128. | MR | Zbl
.Cité par Sources :