On considère une marche aléatoire sur les points d'un processus de Poisson marqué. Les taux de saut ont une décroissance exponentielle en fonction de la longueur du saut, généralisant le modèle de sauts à portée variable de Mott pour les systèmes désordonnés en regime de localisation forte d'Anderson. On montre que pour presque toute réalisation du processus ponctuel marqué, la marche aléatoire de point de départ arbitraire satisfait un principe d'invariance avec matrice de diffusion limite déterministe définie positive. On montre que ce resultat s'étend à d'autres processus ponctuels incluant les réseaux dilués.
We consider a random walk on a homogeneous Poisson point process with energy marks. The jump rates decay exponentially in the -power of the jump length and depend on the energy marks via a Boltzmann-like factor. The case corresponds to the phonon-induced Mott variable range hopping in disordered solids in the regime of strong Anderson localization. We prove that for almost every realization of the marked process, the diffusively rescaled random walk, with an arbitrary start point, converges to a Brownian motion whose diffusion matrix is positive definite and independent of the environment. Finally, we extend the above result to other point processes including diluted lattices.
Mots-clés : random walk in random environment, Poisson point process, percolation, stochastic domination, invariance principle, corrector
@article{AIHPB_2013__49_3_654_0, author = {Caputo, P. and Faggionato, A. and Prescott, T.}, title = {Invariance principle for {Mott} variable range hopping and other walks on point processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {654--697}, publisher = {Gauthier-Villars}, volume = {49}, number = {3}, year = {2013}, doi = {10.1214/12-AIHP490}, mrnumber = {3112430}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/12-AIHP490/} }
TY - JOUR AU - Caputo, P. AU - Faggionato, A. AU - Prescott, T. TI - Invariance principle for Mott variable range hopping and other walks on point processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 654 EP - 697 VL - 49 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/12-AIHP490/ DO - 10.1214/12-AIHP490 LA - en ID - AIHPB_2013__49_3_654_0 ER -
%0 Journal Article %A Caputo, P. %A Faggionato, A. %A Prescott, T. %T Invariance principle for Mott variable range hopping and other walks on point processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 654-697 %V 49 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/12-AIHP490/ %R 10.1214/12-AIHP490 %G en %F AIHPB_2013__49_3_654_0
Caputo, P.; Faggionato, A.; Prescott, T. Invariance principle for Mott variable range hopping and other walks on point processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 3, pp. 654-697. doi : 10.1214/12-AIHP490. http://archive.numdam.org/articles/10.1214/12-AIHP490/
[1] Hopping conductivity in disordered systems. Phys. Rev. B 4 (1971) 2612-2620.
, and .[2] Impurity conduction at low concentrations. Phys. Rev. 120 (1960) 745-755. | Zbl
and .[3] On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996) 1036-1048. | MR | Zbl
and .[4] Solid State Phyisics. Saunders College, Philadelphia, 1976.
and .[5] Random walks on supercritical percolation clusters. Ann. Probab. 32 (4) (2004) 3024-3084. | MR | Zbl
.[6] Invariance principle for the random conductance model with unbounded conductances. Ann. Probab. 38 (2010) 234-276. | MR | Zbl
and .[7] Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (1-2) (2007) 83-120. | MR | Zbl
and .[8] Anomalous heat-kernel decay for random walk among bounded random conductances. Ann. Inst. Henri Poincaré Probab. Stat. 274 (2008) 374-392. | Numdam | MR | Zbl
, , and .[9] Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12 (2007) 1323-1348. | MR | Zbl
and .[10] Weak convergence for reversible random walks in a random environment. Ann. Probab. 21 (1993) 1427-1440. | MR | Zbl
.[11] Spectral homogenization of reversible random walks on in a random environment. Stochastic Process. Appl. 104 (2003) 29-56. | MR | Zbl
and .[12] Isoperimetric inequalities and mixing time for a random walk on a random point process. Ann. Appl. Probab. 17 (2007) 1707-1744. | MR | Zbl
and .[13] Diffusivity in one-dimensional generalized Mott variable-range hopping models. Ann. Appl. Probab. 19 (4) (2009) 1459-1494. | MR | Zbl
and .[14] Recurrence and transience for long-range reversible random walks on a random point process. Electron. J. Probab. 14 (2009) 2580-2616. | MR | Zbl
, and .[15] An Introduction to the Theory of Point Processes. Springer, New York, 1988. | MR | Zbl
and .[16] Invariance principle for reversible Markov processes with applications to random motions in random environments. J. Stat. Phys. 55 (1989) 787-855. | MR | Zbl
, , and .[17] Probability: Theory and Examples, 3rd edition. Thomson, Cambridge, 2005. | MR | Zbl
.[18] Mott law for Mott variable-range random walk. Comm. Math. Phys. 281 (1) (2008) 263-286. | MR | Zbl
and .[19] Mott law as lower bound for a random walk in a random environment. Comm. Math. Phys. 263 (2006) 21-64. | MR | Zbl
, and .[20] On symmetric random walks with random conductances on . Probab. Theory Related Fields 134 (2006) 565-602. | MR | Zbl
and .[21] Percolation, 2nd edition. Grundlehren 321. Springer, Berlin, 1999. | MR
.[22] Central limit theorem for additive functionals of reversible Markov process and applications to simple exclusion. Comm. Math. Phys. 104 (1986) 1-19. | MR | Zbl
and .[23] The method of averaging and walks in inhomogeneous environments. Russian Math. Surveys 40 (2) (1985) 73-145. | MR | Zbl
.[24] Domination by product measures. Ann. Probab. 25 (1997) 71-95. | MR | Zbl
, and .[25] Quenched invariance principles for random walks with random conductances. J. Stat. Phys. 130 (2008) 1025-1046. | MR | Zbl
.[26] Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007) 2287-2307. | MR | Zbl
and .[27] Evolving sets, mixing and heat kernel bounds. Probab. Theory Related Fields 133 (2005) 245-266. | MR | Zbl
and .[28] Conduction in glasses containing transition metal ions. J. Non-Crystal. Solids 1 (1968) 1.
.[29] Conduction in non-crystalline materials. Phil. Mag. 19 (1969) 835.
.[30] Electrons in glass. In Nobel Lectures, Physics 1971-1980. World Scientific, Singapore, 1992.
.[31] Electronic Processes in Non-Crystaline Materials. Oxford Univ. Press, Oxford, 1979. | Zbl
and .[32] Quenched invariance principles for walks on clusters of percolations or among random conductances. Probab. Theory Related Fields 129 (2) (2004) 219-244. | MR | Zbl
and .[33] Electronic Properties of Doped Semiconductors. Springer, Berlin, 1984.
and .[34] Large Scale Dynamics of Interacting Particles. Springer, Berlin, 1991. | Zbl
.Cité par Sources :