Etant donné un processus multiplicatif fractionnaire bi-dimensionnel déterminé par deux exposants de Hurst et , nous montrons l’existence d’un résultat uniforme pour la dimension de Hausdorff des images des sous-ensembles de par si et seulement si .
Given a two-dimensional fractional multiplicative process determined by two Hurst exponents and , we show that there is an associated uniform Hausdorff dimension result for the images of subsets of by if and only if .
Mots-clés : Hausdorff dimension, fractional multiplicative processes, uniform dimension result, level sets
@article{AIHPB_2014__50_2_512_0, author = {Jin, Xiong}, title = {A uniform dimension result for two-dimensional fractional multiplicative processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {512--523}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP509}, mrnumber = {3189082}, zbl = {1292.60049}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/12-AIHP509/} }
TY - JOUR AU - Jin, Xiong TI - A uniform dimension result for two-dimensional fractional multiplicative processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 512 EP - 523 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/12-AIHP509/ DO - 10.1214/12-AIHP509 LA - en ID - AIHPB_2014__50_2_512_0 ER -
%0 Journal Article %A Jin, Xiong %T A uniform dimension result for two-dimensional fractional multiplicative processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 512-523 %V 50 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/12-AIHP509/ %R 10.1214/12-AIHP509 %G en %F AIHPB_2014__50_2_512_0
Jin, Xiong. A uniform dimension result for two-dimensional fractional multiplicative processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 2, pp. 512-523. doi : 10.1214/12-AIHP509. http://archive.numdam.org/articles/10.1214/12-AIHP509/
[1] Multifractal analysis of complex random cascades. Comm. Math. Phys. 297 (2010) 129-168. | MR | Zbl
and .[2] Convergence of complex multiplicative cascades. Ann. Appl. Probab. 20 (2010) 1219-1252. | MR | Zbl
, and .[3] Fractional multiplicative processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 1116-1129. | Numdam | MR | Zbl
and .[4] KPZ in one dimensional random geometry of multiplicative cascades. Comm. Math. Phys. 289 (2009) 653-662. | MR | Zbl
and .[5] A dimension theorem for sample functions of stable processes. Illinois J. Math. 4 (1960) 370-375. | MR | Zbl
and .[6] Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10 (1961) 493-516. | MR | Zbl
and .[7] Liouville quantum gravity and KPZ. Invent. Math. 185 (2011) 333-393. | MR | Zbl
and .[8] Fractal Geometry: Mathematical Foundations and Applications, 2nd edition. Wiley, Hoboken, NJ, 2003. | MR | Zbl
.[9] Some dimension theorems for the sample functions of stable processes. Indiana Univ. Math. J. 20 (1970/71) 733-738. | MR | Zbl
.[10] Uniform dimension results for processes with independent increments. Z. Wahrsch. Verw. Gebiete 28 (1973/74) 277-288. | MR | Zbl
and .[11] The graph and range singularity spectra of -adic independent cascade functions. Adv. Math. 226 (2011) 4987-5017. | MR | Zbl
.[12] Dimension result and KPZ formula for two-dimensional multiplicative cascade processes. Ann. Probab. 40 (2012) 1-18. | MR | Zbl
.[13] Some Random Series of Functions, 2nd edition. Cambridge Studies in Advanced Mathematics 5. Cambridge Univ. Press, Cambridge, 1985. | MR | Zbl
.[14] Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22 (1976) 131-145. | MR | Zbl
and .[15] Une propriété métrique du mouvement brownien. C. R. Acad. Sci. Paris Sér. A-B 268 (1969) A727-A728. | MR | Zbl
.[16] Lévy processes: capacity and Hausdorff dimension. Ann. Probab. 33 (2005) 841-878. | MR | Zbl
and .[17] La mesure de Hausdorff de la courbe du mouvement brownien. Giorn. Ist. Ital. Attuari 16 (1953) 1-37. | MR | Zbl
.[18] H. P. McKean, Jr. Hausdorff-Besicovitch dimension of Brownian motion paths. Duke Math. J. 22 (1955) 229-234. | MR | Zbl
[19] Path behavior of processes with stationary independent increments. Z. Wahrsch. Verw. Gebiete 17 (1971) 53-73. | MR | Zbl
.[20] KPZ formula for log-infinitely divisible multifractal random measures. ESAIM: Probab. Stat. 15 (2011) 358-371. | EuDML | Numdam | MR | Zbl
and .[21] The Hausdorff -dimensional measure of Brownian paths in -space. Math. Proc. Cambridge Philos. Soc. 49 (1953) 31-39. | MR | Zbl
.[22] The measure theory of random fractals. Math. Proc. Cambridge Philos. Soc. 100 (1986) 383-406. | MR | Zbl
.[23] Uniform dimension results for Gaussian random fields. Sci. China Ser. A 52 (2009) 1478-1496. | MR | Zbl
and .[24] Dimension results for Gaussian vector fields and index- stable fields. Ann. Probab. 23 (1995) 273-291. | MR | Zbl
.[25] Random fractals and Markov processes. In Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 2 261-338. Proc. Sympos. Pure Math. 72. Amer. Math. Soc., Providence, RI, 2004. | MR | Zbl
.Cité par Sources :