We consider “nonconventional” averaging setup in the form , where , is either a stochastic process or a dynamical system with sufficiently fast mixing while , and , grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.
Nous considérons un cadre non conventionnel de moyenne de la forme , où , est un processus stochastique ou un système dynamique suffisamment mélangeant tandis que , et , ont une croissance sur-linéaire. Nous montrons que le terme d’erreur après renormalisation est asymptotiquement gaussien.
Keywords: averaging, limit theorems, martingales, hyperbolic dynamical systems
@article{AIHPB_2014__50_1_236_0, author = {Kifer, Yuri}, title = {Nonconventional limit theorems in averaging}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {236--255}, publisher = {Gauthier-Villars}, volume = {50}, number = {1}, year = {2014}, doi = {10.1214/12-AIHP514}, mrnumber = {3161530}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/12-AIHP514/} }
TY - JOUR AU - Kifer, Yuri TI - Nonconventional limit theorems in averaging JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 236 EP - 255 VL - 50 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/12-AIHP514/ DO - 10.1214/12-AIHP514 LA - en ID - AIHPB_2014__50_1_236_0 ER -
Kifer, Yuri. Nonconventional limit theorems in averaging. Annales de l'I.H.P. Probabilités et statistiques, Volume 50 (2014) no. 1, pp. 236-255. doi : 10.1214/12-AIHP514. http://archive.numdam.org/articles/10.1214/12-AIHP514/
[1] Multiple recurrence and almost sure convergence for weakly mixing dynamical systems. Israel J. Math. 103 (1998) 111-124. | MR | Zbl
.[2] Weakly mixing PET. Ergodic Theory Dynam. Systems 7 (1987) 337-349. | MR | Zbl
.[3] Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math. 470. Springer, Berlin, 1975. | MR | Zbl
.[4] A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl. 22 (1977) 482-497. | MR | Zbl
.[5] Introduction to Strong Mixing Conditions. Kendrick Press, Heber City, 2007. | Zbl
.[6] From discrete-to continuous time ergodic theorems. Ergodic Theory Dynam. Systems. 32 (2012) 383-426. | MR | Zbl
, and .[7] On decay of correlations in Anosov flows. Ann. of Math. (2) 147 (1998) 357-390. | MR | Zbl
.[8] Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc. 356 (2003) 1637-1689. | MR | Zbl
.[9] Averaging and invariant measures. Mosc. Math. J. 5 (2005) 537-576. | MR
.[10] Stochastic Processes. Wiley, New York, 1953. | MR | Zbl
.[11] Energy transfer in a fast-slow Hamiltonian system. Comm. Math. Phys. 308 (2011) 201-225. | MR | Zbl
and .[12] Nonconventional ergodic averages. Proc. Sympos Pure Math. 50 (1990) 43-56. | MR | Zbl
.[13] Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions. Ergodic Theory Dynam. Systems 23 (2003) 87-110. | MR | Zbl
, and .[14] Stability of mixing and rapid mixing for hyperbolic flows. Ann. of Math. (2) 166 (2007) 269-291. | MR | Zbl
, and .[15] Mixing properties and central limit theorem for a class of non-identical piecewise monotonic -transformations. Math. Nachr. 181 (1996) 185-214. | MR | Zbl
.[16] Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen, 1971. | MR | Zbl
and .[17] Limit Theorems for Stochastic Processes, 2nd edition. Springer, Berlin, 2003. | MR | Zbl
and .[18] On stochastic processes defined by differential equations with a small parameter. Theory Probab. Appl. 11 (1966) 211-228. | MR | Zbl
.[19] A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl. 11 (1966) 390-406. | Zbl
.[20] Limit theorems in averaging for dynamical systems. Ergodic Theory Dynam. Systems 15 (1995) 1143-1172. | MR | Zbl
.[21] Averaging principle for fully coupled dynamical systems and large deviations. Ergodic Theory Dynam. Systems 24 (2004) 847-871. | MR | Zbl
.[22] Nonconventional law of large numbers and fractal dimensions of some multiple recurrence sets. Stoch. Dyn. 12 (2012) 1150023. | MR | Zbl
.[23] A strong invariance principle for nonconventional sums. Probab. Theory Related Fields 155(1-2) (2013) 463-486. | MR | Zbl
.[24] Introduction to the Modern Theory of Dynamical Systems. Cambridge Univ. Press, Cambridge, 1995. | MR | Zbl
and .[25] Nonconventional limit theorems in discrete and continuous time via martingales. Ann. Probab. To appear. | MR
and .[26] Central limit theorems for deterministic systems. In International Conference on Dynamical Systems (Montevideo, 1995) 56-75. Pitman Research Notes in Math. 363. Longman, Harlow, 1996. | MR | Zbl
.[27] Invariance principles for dependent variables. Z. Wahrsch. Verw. Gebiete 32 (1975) 165-178. | MR | Zbl
.[28] On the invariance principle for nonstationary mixingales. Ann. Probab. 5 (1977) 616-621. | MR | Zbl
.[29] Averaging Methods in Nonlinear Dynamical Systems, 2nd edition. Springer, New York, 2007. | MR | Zbl
, and .Cited by Sources: