Nonconventional limit theorems in averaging
Annales de l'I.H.P. Probabilités et statistiques, Volume 50 (2014) no. 1, pp. 236-255.

We consider “nonconventional” averaging setup in the form dX ε (t) dt=εB(X ε (t), 𝛯(q 1 (t)),𝛯(q 2 (t)),...,𝛯(q (t))) where 𝛯(t), t0 is either a stochastic process or a dynamical system with sufficiently fast mixing while q j (t)=α j t, α 1 <α 2 <<α k and q j , j=k+1,..., grow faster than linearly. We show that the properly normalized error term in the “nonconventional” averaging principle is asymptotically Gaussian.

Nous considérons un cadre non conventionnel de moyenne de la forme dX ε (t) dt=εB(X ε (t), 𝛯(q 1 (t)),𝛯(q 2 (t)),...,𝛯(q (t)))𝛯(t), t0 est un processus stochastique ou un système dynamique suffisamment mélangeant tandis que q j (t)=α j t, α 1 <α 2 <<α k et q j , j=k+1,..., ont une croissance sur-linéaire. Nous montrons que le terme d’erreur après renormalisation est asymptotiquement gaussien.

DOI: 10.1214/12-AIHP514
Classification: 34C29, 60F17, 37D20
Keywords: averaging, limit theorems, martingales, hyperbolic dynamical systems
@article{AIHPB_2014__50_1_236_0,
     author = {Kifer, Yuri},
     title = {Nonconventional limit theorems in averaging},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {236--255},
     publisher = {Gauthier-Villars},
     volume = {50},
     number = {1},
     year = {2014},
     doi = {10.1214/12-AIHP514},
     mrnumber = {3161530},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/12-AIHP514/}
}
TY  - JOUR
AU  - Kifer, Yuri
TI  - Nonconventional limit theorems in averaging
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2014
SP  - 236
EP  - 255
VL  - 50
IS  - 1
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/12-AIHP514/
DO  - 10.1214/12-AIHP514
LA  - en
ID  - AIHPB_2014__50_1_236_0
ER  - 
%0 Journal Article
%A Kifer, Yuri
%T Nonconventional limit theorems in averaging
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2014
%P 236-255
%V 50
%N 1
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/12-AIHP514/
%R 10.1214/12-AIHP514
%G en
%F AIHPB_2014__50_1_236_0
Kifer, Yuri. Nonconventional limit theorems in averaging. Annales de l'I.H.P. Probabilités et statistiques, Volume 50 (2014) no. 1, pp. 236-255. doi : 10.1214/12-AIHP514. http://archive.numdam.org/articles/10.1214/12-AIHP514/

[1] I. Assani. Multiple recurrence and almost sure convergence for weakly mixing dynamical systems. Israel J. Math. 103 (1998) 111-124. | MR | Zbl

[2] V. Bergelson. Weakly mixing PET. Ergodic Theory Dynam. Systems 7 (1987) 337-349. | MR | Zbl

[3] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math. 470. Springer, Berlin, 1975. | MR | Zbl

[4] A. N. Borodin. A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl. 22 (1977) 482-497. | MR | Zbl

[5] R. C. Bradley. Introduction to Strong Mixing Conditions. Kendrick Press, Heber City, 2007. | Zbl

[6] V. Bergelson, A. Leibman and C. G. Moreira. From discrete-to continuous time ergodic theorems. Ergodic Theory Dynam. Systems. 32 (2012) 383-426. | MR | Zbl

[7] D. Dolgopyat. On decay of correlations in Anosov flows. Ann. of Math. (2) 147 (1998) 357-390. | MR | Zbl

[8] D. Dolgopyat. Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc. 356 (2003) 1637-1689. | MR | Zbl

[9] D. Dolgopyat. Averaging and invariant measures. Mosc. Math. J. 5 (2005) 537-576. | MR

[10] J. Doob. Stochastic Processes. Wiley, New York, 1953. | MR | Zbl

[11] D. Dolgopyat and C. Liverani. Energy transfer in a fast-slow Hamiltonian system. Comm. Math. Phys. 308 (2011) 201-225. | MR | Zbl

[12] H. Furstenberg. Nonconventional ergodic averages. Proc. Sympos Pure Math. 50 (1990) 43-56. | MR | Zbl

[13] M. Field, I. Melbourne and A. Torok. Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions. Ergodic Theory Dynam. Systems 23 (2003) 87-110. | MR | Zbl

[14] M. Field, I. Melbourne and A. Torok. Stability of mixing and rapid mixing for hyperbolic flows. Ann. of Math. (2) 166 (2007) 269-291. | MR | Zbl

[15] L. Heinrich. Mixing properties and central limit theorem for a class of non-identical piecewise monotonic C 2 -transformations. Math. Nachr. 181 (1996) 185-214. | MR | Zbl

[16] I. A. Ibragimov and Y. V. Linnik. Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, Groningen, 1971. | MR | Zbl

[17] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes, 2nd edition. Springer, Berlin, 2003. | MR | Zbl

[18] R. Z. Khasminskii. On stochastic processes defined by differential equations with a small parameter. Theory Probab. Appl. 11 (1966) 211-228. | MR | Zbl

[19] R. Z. Khasminskii. A limit theorem for solutions of differential equations with random right-hand side. Theory Probab. Appl. 11 (1966) 390-406. | Zbl

[20] Yu. Kifer. Limit theorems in averaging for dynamical systems. Ergodic Theory Dynam. Systems 15 (1995) 1143-1172. | MR | Zbl

[21] Yu. Kifer. Averaging principle for fully coupled dynamical systems and large deviations. Ergodic Theory Dynam. Systems 24 (2004) 847-871. | MR | Zbl

[22] Y. Kifer. Nonconventional law of large numbers and fractal dimensions of some multiple recurrence sets. Stoch. Dyn. 12 (2012) 1150023. | MR | Zbl

[23] Y. Kifer. A strong invariance principle for nonconventional sums. Probab. Theory Related Fields 155(1-2) (2013) 463-486. | MR | Zbl

[24] A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge Univ. Press, Cambridge, 1995. | MR | Zbl

[25] Yu. Kifer and S. R. S. Varadhan. Nonconventional limit theorems in discrete and continuous time via martingales. Ann. Probab. To appear. | MR

[26] C. Liverani. Central limit theorems for deterministic systems. In International Conference on Dynamical Systems (Montevideo, 1995) 56-75. Pitman Research Notes in Math. 363. Longman, Harlow, 1996. | MR | Zbl

[27] D. L. Mcleish. Invariance principles for dependent variables. Z. Wahrsch. Verw. Gebiete 32 (1975) 165-178. | MR | Zbl

[28] D. L. Mcleish. On the invariance principle for nonstationary mixingales. Ann. Probab. 5 (1977) 616-621. | MR | Zbl

[29] J. A. Sanders, F. Verhurst and J. Murdock. Averaging Methods in Nonlinear Dynamical Systems, 2nd edition. Springer, New York, 2007. | MR | Zbl

Cited by Sources: