Relative dimensions of isotypic components of th order tensor representations of the symmetric group on letters give a Plancherel-type measure on the space of Young diagrams with cells and at most rows. It was conjectured by G. Olshanski that dimensions of isotypic components of tensor representations of finite symmetric groups, after appropriate normalization, converge to a constant with respect to this family of Plancherel-type measures in the limit when converges to a constant. The main result of the paper is the proof of this conjecture.
Les dimensions relatives des composants isotypiques des représentations tensorielles du ième ordre du groupe symétrique sur lettres induisent une mesure du type Plancherel sur l’espace des diagrammes de Young avec cellules et au plus rangs. G. Olshanski a conjecturé que ces dimensions, après renormalisation, convergent vers une constante sous cette famille de mesures du type Plancherel dans la limite où converge vers une constante. Le principal résultat de cet article est la preuve de cette conjecture.
Keywords: asymptotic representation theory, Schur-Weyl duality, Plancherel measure, Schur-Weyl measure, Vershik-Kerov conjecture
@article{AIHPB_2014__50_2_678_0, author = {Mkrtchyan, Sevak}, title = {Entropy of {Schur-Weyl} measures}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {678--713}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP519}, mrnumber = {3189089}, zbl = {1290.05148}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/12-AIHP519/} }
TY - JOUR AU - Mkrtchyan, Sevak TI - Entropy of Schur-Weyl measures JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 678 EP - 713 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/12-AIHP519/ DO - 10.1214/12-AIHP519 LA - en ID - AIHPB_2014__50_2_678_0 ER -
Mkrtchyan, Sevak. Entropy of Schur-Weyl measures. Annales de l'I.H.P. Probabilités et statistiques, Volume 50 (2014) no. 2, pp. 678-713. doi : 10.1214/12-AIHP519. http://archive.numdam.org/articles/10.1214/12-AIHP519/
[1] Approximate factorization and concentration for characters of symmetric groups. Int. Math. Res. Not. 4 (2001) 179-192. | MR | Zbl
.[2] Asymptotics of Plancherel measures for the infinite-dimensional unitary group. Adv. Math. 219 (2008) 894-931. | MR | Zbl
and .[3] Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13 (2000) 481-515. | MR | Zbl
, and .[4] Asymptotics of Plancherel-type random partitions. J. Algebra 313 (2007) 40-60. | MR | Zbl
and .[5] The boundary of the Gelfand-Tsetlin graph: A new approach. Adv. Math. 230 (2012) 1738-1779. | MR | Zbl
and .[6] On the Vershik-Kerov conjecture concerning the Shannon-Macmillan-Breiman theorem for the Plancherel family of measures on the space of Young diagrams. Geom. Funct. Anal. 22 (2012) 938-979. | MR | Zbl
.[7] Representation Theory. A First Course. Graduate Texts in Mathematics 129. Springer-Verlag, New York, 1991. | MR | Zbl
and .[8] Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. 153 (2001) 259-296. | MR | Zbl
.[9] A variational problem for random Young tableaux. Adv. Math. 26 (1977) 206-222. | MR | Zbl
and .[10] Asymptotics of the maximal and the typical dimensions of isotypic components of tensor representations of the symmetric group. European J. Combin. 33 (2012) 1631-1652. | MR | Zbl
.[11] Symmetric functions and random partitions. In Symmetric Functions 2001: Surveys of Developments and Perspectives 223-252. NATO Sci. Ser. II Math. Phys. Chem. 74. Kluwer Acad. Publ., Dordrecht, 2002. | MR | Zbl
.[12] Asymptotics of Jack polynomials as the number of variables goes to infinity. Int. Math. Res. Not. 13 (1998) 641-682. | MR | Zbl
and .[13] Difference operators and determinantal point processes. Funct. Anal. Appl. 42 (2008) 317-329. | MR | Zbl
.[14] Asymptotic representation theory: Lectures at Independent University of Moscow II, Lecture Notes, 2009, available at http://www.iitp.ru/en/userpages/88/.
.[15] Determinantal random point fields. Uspekhi Mat. Nauk 55 (2000) 107-160. English translation: Russian Math. Surveys 55 (2000) 923-975. | MR | Zbl
.[16] Asymptotics of the Plancherel measure of the symmetric group. Soviet Math. Dokl. 18 (1977) 527-531. | Zbl
and .[17] Characters and factor representations of the infinite unitary group. Soviet Math. Dokl. 26 (1982) 570-574. | MR | Zbl
and .[18] Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group. Funktsional. Anal. i Prilozhen. 19 (1985) 25-36. | MR | Zbl
and .[19] Some numerical and algorithmical problems in the asymptotic representation theory. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 373 (2009) 77-93, 346-347. | Zbl
and .[20] Représentations factorielles de type II1 de U(infty). J. Math. Pures Appl. 55 (1976) 1-20. | MR | Zbl
.[21] The Classical Groups: Their Invariants and Representations. Princeton Univ. Press, Princeton, NJ, 1939. | MR | Zbl
.Cited by Sources: