We consider a homogeneous fragmentation process with killing at an exponential barrier. With the help of two families of martingales we analyse the decay of the largest fragment for parameter values that allow for survival. In this respect the present paper is also concerned with the probability of extinction of the killed process.
Nous considérons un processus de fragmentation homogène tué à une barrière exponentielle. À l'aide de deux familles de martingales nous analysons la décroissance du plus gros fragment pour des valeurs des paramètres permettant la survie du système. Cet article traite aussi de la probabilité d'extinction du processus tué.
Keywords: homogeneous fragmentation, scale functions, additive martingales, multiplicative martingales, largest fragment
@article{AIHPB_2014__50_2_476_0, author = {Knobloch, Robert and Kyprianou, Andreas E.}, title = {Survival of homogeneous fragmentation processes with killing}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {476--491}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP520}, mrnumber = {3189080}, zbl = {1301.60087}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/12-AIHP520/} }
TY - JOUR AU - Knobloch, Robert AU - Kyprianou, Andreas E. TI - Survival of homogeneous fragmentation processes with killing JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 476 EP - 491 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/12-AIHP520/ DO - 10.1214/12-AIHP520 LA - en ID - AIHPB_2014__50_2_476_0 ER -
%0 Journal Article %A Knobloch, Robert %A Kyprianou, Andreas E. %T Survival of homogeneous fragmentation processes with killing %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 476-491 %V 50 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/12-AIHP520/ %R 10.1214/12-AIHP520 %G en %F AIHPB_2014__50_2_476_0
Knobloch, Robert; Kyprianou, Andreas E. Survival of homogeneous fragmentation processes with killing. Annales de l'I.H.P. Probabilités et statistiques, Volume 50 (2014) no. 2, pp. 476-491. doi : 10.1214/12-AIHP520. http://archive.numdam.org/articles/10.1214/12-AIHP520/
[1] Brunet-Derrida behavior of branching-selection particle systems on the line. Comm. Math. Phys. 298 (2010) 323-342. | MR | Zbl
and .[2] The genealogy of branching Brownian motion with absorption. Ann. Probab. To appear. | MR
, and .[3] Travelling waves and homogeneous fragmenation. Ann. Appl. Probab. 21 (2011) 1749-1794. | MR | Zbl
, and .[4] Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl
.[5] Asymptotic behaviour of fragmentation processes. J. Europ. Math. Soc. 5 (2003) 395-416. | MR | Zbl
.[6] Random Fragmentation and Coagulation Processes. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
.[7] Additive martingales and probability tilting for homogeneous fragmentations. Preprint, 2003.
and .[8] Discritization methods for homogeneous fragmentations. J. London Math. Soc. 72 (2005) 91-109. | MR | Zbl
and .[9] Probability, 2nd edition. SIAM, Philadelphia, PA, 1992. | MR | Zbl
.[10] The survival probability of a branching random walk in presence of an absorbing wall. Europhys. Lett. EPL 78 (2007) Art. 60006. | MR | Zbl
and .[11] Quasi-stationary regime of a branching random walk in presence of an absorbing wall. J. Stat. Phys. 131 (2008) 203-233. | MR | Zbl
and .[12] Probability: Theory and Examples. Duxbury Press, N. Scituate, 1991. | MR | Zbl
.[13] Asymptotics for the survival probability in a supercritical branching random walk. Ann. Inst. H. Poincaré Probab. Statist. 47 (2011) 111-129. | Numdam | MR | Zbl
, and .[14] Survival probabilities for branching Brownian motion with absorption. Elect. Comm. Probab. 12 (2007) 81-92. | MR | Zbl
and .[15] Further probabilistic analysis of the Fisher-Kolmogorov-Petrovskii-Piscounov equation: One sided travelling waves. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 125-145. | Numdam | MR | Zbl
, and .[16] Strong law of large numbers for fragmentation processes. Ann. Inst. H. Poincaré Probab. Statist. 46 (2010) 119-134. | Numdam | MR | Zbl
, and .[17] Asymptotic properties of fragmentation processes. Ph.D. thesis, Univ. Bath, 2011.
.[18] One-sided FKPP travelling waves in the context of homogeneous fragmentation processes. Preprint, 2012. Available at arXiv:1204.0758.
.[19] Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006.
.Cited by Sources: