We consider a catalytic branching random walk on that branches at the origin only. In the supercritical regime we establish a law of large number for the maximal position : For some constant , almost surely on the set of infinite number of visits of the origin. Then we determine all possible limiting laws for as goes to infinity.
Nous considérons une marche aléatoire branchant catalytique sur qui ne branche qu’à l’origine. Dans le cas surcritique, nous établissons une loi des grands nombres pour la position maximale : Il existe une constante explicite telle que presque sûrement sur l’ensemble des trajectoires pour lesquelles l’origine est visitée une infinité de fois. Ensuite, nous déterminons toutes les lois limites possibles, lorsque , pour la suite .
Keywords: branching processes, catalytic branching random walk
@article{AIHPB_2014__50_2_327_0, author = {Carmona, Philippe and Hu, Yueyun}, title = {The spread of a catalytic branching random walk}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {327--351}, publisher = {Gauthier-Villars}, volume = {50}, number = {2}, year = {2014}, doi = {10.1214/12-AIHP529}, mrnumber = {3189074}, zbl = {1291.60208}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/12-AIHP529/} }
TY - JOUR AU - Carmona, Philippe AU - Hu, Yueyun TI - The spread of a catalytic branching random walk JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 327 EP - 351 VL - 50 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/12-AIHP529/ DO - 10.1214/12-AIHP529 LA - en ID - AIHPB_2014__50_2_327_0 ER -
%0 Journal Article %A Carmona, Philippe %A Hu, Yueyun %T The spread of a catalytic branching random walk %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 327-351 %V 50 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/12-AIHP529/ %R 10.1214/12-AIHP529 %G en %F AIHPB_2014__50_2_327_0
Carmona, Philippe; Hu, Yueyun. The spread of a catalytic branching random walk. Annales de l'I.H.P. Probabilités et statistiques, Volume 50 (2014) no. 2, pp. 327-351. doi : 10.1214/12-AIHP529. http://archive.numdam.org/articles/10.1214/12-AIHP529/
[1] Convergence in law of the minimum of a branching random walk. Preprint. Ann. Probab. To appear. Available at http://arxiv.org/abs/1101.1810. | MR | Zbl
.[2] Weak convergence for the minimal position in a branching random walk: A simple proof. Period. Math. Hungar. 61(1-2) (2010) 43-54. | MR | Zbl
and .[3] Branching random walk in a catalytic medium. I. Basic equations. Positivity 4(1) (2000) 41-100. | MR | Zbl
and .[4] Asymptotics of branching symmetric random walk on the lattice with a single source. C. R. Acad. Sci. Paris Sér. I Math. 326(8) (1998) 975-980. | MR | Zbl
, and .[5] Erratum: “Asymptotics of branching symmetric random walk on the lattice with a single source”. C. R. Acad. Sci. Paris Sér. I Math. 327(6) (1998) 585. | MR | Zbl
, and .[6] Branching Processes. Dover, Mineola, NY, 2004. Reprint of the 1972 original [Springer, New York; MR0373040]. | MR | Zbl
and .[7] The almost-sure population growth rate in branching Brownian motion with a quadratic breeding potential. Statist. Probab. Lett. 80(17-18) (2010) 1442-1446. | MR | Zbl
, , and .[8] Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25-37. | MR | Zbl
.[9] Measure change in multitype branching. Adv. in Appl. Probab. 36(2) (2004) 544-581. | MR | Zbl
and .[10] Moment analysis of a branching random walk on a lattice with a single source. Dokl. Akad. Nauk 363(4) (1998) 439-442. | MR | Zbl
and .[11] Minimal displacement of branching random walk. Z. Wahrsch. Verw. Gebiete 45 (1978) 89-108. | MR | Zbl
.[12] A large deviation theory via the renewal theorem. Note, 2005. Available at http://www.math.sciences.univ-nantes.fr/~carmona/renewaldp.pdf.
.[13] On systems of renewal equations. J. Math. Anal. Appl. 30 (1970) 425-434. | MR | Zbl
.[14] Renewal theorem for a system of renewal equations. Ann. Inst. Henri Poincaré Probab. Stat. 39 (2003) 823-838. | Numdam | MR | Zbl
.[15] Large Deviations Techniques and Applications. Stoch. Model. Appl. Probab. 38. Springer, Berlin, 2010. Corrected reprint of the second (1998) edition. | MR | Zbl
and .[16] Catalytic branching processes via spine techniques and renewal theory. Preprint, 2011. Available at http://arxiv.org/abs/1106.5428.
and .[17] An application of renewal theorems to exponential moments of local times. Electron. Commun. Probab. 15 (2010), 263-269. | MR | Zbl
and .[18] An Introduction to Probability Theory and Its Applications, Vol. I. Wiley, New York, 1950. | MR | Zbl
.[19] An Introduction to Probability Theory and Its Applications, Vol. II. Wiley, New York, 1966. | MR | Zbl
.[20] A spine approach to branching diffusions with applications to -convergence of martingales. In Séminaire de Probabilités XLII 281-330, 2009. | MR | Zbl
and .[21] Branching Brownian motion with an inhomogeneous breeding potential. Ann. Inst. Henri Poincaré Probab. Stat. 45(3) (2009) 793-801. | Numdam | MR | Zbl
and .[22] The many-to-few lemma and multiple spines. Preprint, 2011. Available at http://arxiv.org/abs/1106.4761.
and .[23] Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Probab. 37(2) (2009) 742-789. | MR | Zbl
and .[24] Conceptual proofs of criteria for mean behavior of branching processes. Ann. Probab. 23(3) (1995) 1125-1138. | MR | Zbl
, and .[25] Random Walks of Infinitely Many Particles. World Scientific, River Edge, NJ, 1994. | MR | Zbl
.[26] Branching random walks. Saint-Flour summer's course, 2012.
.[27] Individuals at the origin in the critical catalytic branching random walk. In Discrete Random Walks (Paris, 2003) 325-332 (electronic). Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2003. | MR | Zbl
and .[28] Two-dimensional limit theorem for a critical catalytic branching random walk. In Mathematics and Computer Science III 387-395. Birkhäuser, Basel, 2004. | MR | Zbl
and .[29] A limit theorem for critical catalytic branching random walks. Teor. Veroyatn. Primen. 49(3) (2004), 461-484. | MR | Zbl
and .[30] Catalytic branching random walks and queueing systems with a random number of independently operating servers. Teor. Ĭmovīr. Mat. Stat. 69 (2003) 1-15. | MR | Zbl
, and .Cited by Sources: