Les processus de branchement en environnement aléatoire sont une généralisation des processus de Galton Watson où à chaque génération, la reproduction est choisie de manière i.i.d. Dans le régime surcritique, ces processus survivent avec probabilité positive et croissent alors géométriquement. Ce papier considère l’événement rare où le processus prend des valeurs non nulles mais bornées en temps long. Nous décrivons ainsi le comportement asymptotique de quand . Plus précisément, nous caractérisons la vitesse exponentielle àlaquelle tend vers zéro en utilisant une représentation en épine due à Geiger. Nous donnons alors des bornes pour cette vitesse. Si la loi de reproduction est linéaire fractionnaire, la vitesse devient plus explicite et deux régimes apparaissent. Nous montrons par ailleurs que ces régimes affectent le comportement asymptotique de l’ancêtre commun le plus récent de la population en vie à l’instant n quand cette dernière est conditionnée à prendre de petites valeurs en temps long.
Branching Processes in Random Environment (BPREs) are the generalization of Galton-Watson processes where in each generation the reproduction law is picked randomly in an i.i.d. manner. In the supercritical case, the process survives with positive probability and then almost surely grows geometrically. This paper focuses on rare events when the process takes positive but small values for large times. We describe the asymptotic behavior of , as . More precisely, we characterize the exponential decrease of using a spine representation due to Geiger. We then provide some bounds for this rate of decrease. If the reproduction laws are linear fractional, this rate becomes more explicit and two regimes appear. Moreover, we show that these regimes affect the asymptotic behavior of the most recent common ancestor, when the population is conditioned to be small but positive for large times.
Mots-clés : supercritical branching processes, random environment, large deviations, phase transitions
@article{AIHPB_2014__50_3_770_0, author = {Bansaye, Vincent and B\"oinghoff, Christian}, title = {Small positive values for supercritical branching processes in random environment}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {770--805}, publisher = {Gauthier-Villars}, volume = {50}, number = {3}, year = {2014}, doi = {10.1214/13-AIHP538}, mrnumber = {3224289}, zbl = {06340408}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/13-AIHP538/} }
TY - JOUR AU - Bansaye, Vincent AU - Böinghoff, Christian TI - Small positive values for supercritical branching processes in random environment JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 770 EP - 805 VL - 50 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/13-AIHP538/ DO - 10.1214/13-AIHP538 LA - en ID - AIHPB_2014__50_3_770_0 ER -
%0 Journal Article %A Bansaye, Vincent %A Böinghoff, Christian %T Small positive values for supercritical branching processes in random environment %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 770-805 %V 50 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/13-AIHP538/ %R 10.1214/13-AIHP538 %G en %F AIHPB_2014__50_3_770_0
Bansaye, Vincent; Böinghoff, Christian. Small positive values for supercritical branching processes in random environment. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 770-805. doi : 10.1214/13-AIHP538. http://archive.numdam.org/articles/10.1214/13-AIHP538/
[1] Conditional limit theorems for intermediately subcritical branching processes in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014) 602-627. | Numdam | MR | Zbl
, , and .[2] Limit theorems for a weakly subcritical branching process in random environment. J. Theoret. Probab. 25 (2012) 703-732. | MR | Zbl
, , and .[3] Functional limit theorems for strongly subcritical branching processes in random environment. Stochastic Process. Appl. 115 (2005) 1658-1676. | MR | Zbl
, , and .[4] Criticality for branching processes in random environment. Ann. Probab. 33 (2005) 645-673. | MR | Zbl
, , and .[5] On the extinction times of varying and random environment branching processes. J. Appl. Probab. 12 (1975) 39-46. | MR | Zbl
.[6] Large deviation rates for branching processes. I. Single type case. Ann. Appl. Probab. 4 (1994) 779-790. | MR | Zbl
.[7] On branching processes with random environments: I, II. Ann. Math. Stat. 42 (1971) 1499-1520, 1843-1858. | Zbl
and .[8] Branching Processes. Dover, Mineola, NY, 2004. | MR | Zbl
and .[9] Large deviations for branching processes in random environment. Markov Process. Related Fields 15 (2009) 493-524. | MR | Zbl
and .[10] Upper large deviations for branching processes in random environment with heavy tails. Electron. J. Probab. 16 (2011) 1900-1933. | MR | Zbl
and .[11] Branching processes in random environment. Ph.D. thesis, Goethe-Univ. Frankfurt/Main, 2010.
.[12] Upper large deviations of branching processes in a random environment - Offspring distributions with geometrically bounded tails. Stochastic Process. Appl. 120 (2010) 2064-2077. | MR | Zbl
and .[13] On the survival probability of a branching process in a finite state iid environment. Stochastic Process. Appl. 27 (1998) 151-157. | MR | Zbl
.[14] Reduced subcritical Galton-Watson processes in a random environment. Adv. in Appl. Probab. 31 (1999) 88-111. | MR | Zbl
and .[15] On the left tail asymptotics for the limit law of supercritical Galton-Watson processes in the Böttcher case. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009) 201-225. | Numdam | MR | Zbl
and .[16] Elementary new proofs of classical limit theorems for Galton-Watson processes. J. Appl. Probab. 36 (1999) 301-309. | MR | Zbl
.[17] Limit theorems for subcritical branching processes in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 39 (2003) 593-620. | Numdam | MR | Zbl
, and .[18] Asymptotic properties of branching processes in random environment. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 339-344. | MR | Zbl
and .[19] On the limiting distribution of a supercritical branching process in random environment. J. Appl. Probab. 29 (1992) 499-518. | MR | Zbl
.[20] Moments, moderate and large deviations for a branching process in a random environment. Stochastic Process. Appl. 122 (2010) 522-545. | MR | Zbl
and .[21] Convergence in and its exponential rate for a branching process in a random environment, 2011. Avialable at http://arxiv.org/abs/1011.0533. | MR
and .[22] Conceptual proofs of criteria for mean behavior of branching processes. Ann. Probab. 23 (1995) 1125-1138. | MR | Zbl
, and .[23] Supercritical branching diffusions in random environment. Electron. Commun. Probab. 16 (2011) 781-791. | MR | Zbl
.[24] On large deviations of branching processes in a random environment: Geometric distribution of descendants. Discrete Math. Appl. 16 (2006) 155-174. | MR | Zbl
.[25] On large deviations of strictly subcritical branching processes in a random environment with geometric distribution of progeny. Theory Probab. Appl. 54 (2010) 424-446. | MR | Zbl
.[26] When is the product of two concave functions concave? Int. J. Math. Game Theory Algebra 19 (2010) 165-172. | MR | Zbl
.[27] Erasing a branching tree. Adv. Apl. Probab. suppl. (1986) 101-108. | MR | Zbl
.[28] Large deviations and branching processes. In Proceedings of the 9th International Summer School on Probability Theory and Mathematical Statistics (Sozopol, 1997) 15-38. Pliska Stud. Math. Bulgar. 13. Bulgarian Academy of Sciences, Sofia, 2000. | MR | Zbl
.[29] On branching processes in random environments. Ann. Math. Stat. 40 (1969) 814-824. | MR | Zbl
and .[30] Local probabilities for random walks conditioned to stay positive. Probab. Theory Related Fields 143 (2009) 177-217. | MR | Zbl
and .Cité par Sources :