Nous construisons la généalogie d’un processus de branchement à espace d’états et temps continus associé à un mécanisme de branchement - ou - à l’aide d’un flot stochastique de partitions. Cette construction est valable quel que soit le mécanisme de branchement et permet de définir un objet remarquablement efficace pour étudier les comportements asymptotiques et les convergences. En particulier, nous étudions la propriété d’Eve - l’existence d’un ancêtre dont descend asymptotiquement toute la population - et donnons une condition nécessaire et suffisante sur le pour que cette propriété soit vérifiée. Finalement, nous montrons que le flot de partitions unifie la représentation lookdown et le flot de subordinateurs lorsque la propriété d’Eve est vérifiée.
We encode the genealogy of a continuous-state branching process associated with a branching mechanism - or in short - using a stochastic flow of partitions. This encoding holds for all branching mechanisms and appears as a very tractable object to deal with asymptotic behaviours and convergences. In particular we study the so-called Eve property - the existence of an ancestor from which the entire population descends asymptotically - and give a necessary and sufficient condition on the for this property to hold. Finally, we show that the flow of partitions unifies the lookdown representation and the flow of subordinators when the Eve property holds.
Mots-clés : continuous-state branching process, measure-valued process, genealogy, partition, stochastic flow, lookdown process, subordinator, EVE
@article{AIHPB_2014__50_3_732_0, author = {Labb\'e, Cyril}, title = {Genealogy of flows of continuous-state branching processes via flows of partitions and the {Eve} property}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {732--769}, publisher = {Gauthier-Villars}, volume = {50}, number = {3}, year = {2014}, doi = {10.1214/13-AIHP542}, mrnumber = {3224288}, zbl = {06340407}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/13-AIHP542/} }
TY - JOUR AU - Labbé, Cyril TI - Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 732 EP - 769 VL - 50 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/13-AIHP542/ DO - 10.1214/13-AIHP542 LA - en ID - AIHPB_2014__50_3_732_0 ER -
%0 Journal Article %A Labbé, Cyril %T Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 732-769 %V 50 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/13-AIHP542/ %R 10.1214/13-AIHP542 %G en %F AIHPB_2014__50_3_732_0
Labbé, Cyril. Genealogy of flows of continuous-state branching processes via flows of partitions and the Eve property. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 732-769. doi : 10.1214/13-AIHP542. http://archive.numdam.org/articles/10.1214/13-AIHP542/
[1] The continuum random tree. I. Ann. Probab. 19 (1991) 1-28. | MR | Zbl
.[2] Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
.[3] On prolific individuals in a supercritical continuous-state branching process. J. Appl. Probab. 45 (2008) 714-726. | MR | Zbl
, and .[4] The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 (2000) 249-266. | MR | Zbl
and .[5] Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 (2003) 261-288. | MR | Zbl
and .[6] Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 (2006) 147-181. | MR | Zbl
and .[7] Alpha-stable branching and beta-coalescents. Electron. J. Probab. 10 (2005) 303-325. | MR | Zbl
, , , , , and .[8] Proof(s) of the Lamperti representation of continuous-state branching processes. Probab. Surv. 6 (2009) 62-89. | MR | Zbl
, and .[9] Measure-Valued Markov Processes. Lecture Notes in Math. 1541. Springer, Berlin, 1993. | MR | Zbl
.[10] Historical processes. Mem. Amer. Math. Soc. 93 (1991) iv+179. | MR | Zbl
and .[11] Particle representations for measure-valued population models. Ann. Probab. 27 (1999) 166-205. | MR | Zbl
and .[12] On the Eve property for CSBP. Preprint, 2013. Available at arXiv:1305.6502. | MR | Zbl
and .[13] Random trees, Lévy processes and spatial branching processes. Astérisque 281 (2002) vi+147. | Numdam | MR | Zbl
and .[14] Growth of Lévy trees. Probab. Theory Related Fields 139 (2007) 313-371. | MR | Zbl
and .[15] Propriétés de martingales, explosion et représentation de Lévy-Khintchine d'une classe de processus de branchement à valeurs mesures. Stochastic Process. Appl. 38 (1991) 239-266. | MR | Zbl
and .[16] Tree-valued resampling dynamics martingale problems and applications. Probab. Theory Related Fields 155 (2013) 789-838. | MR
, and .[17] Genealogy of catalytic branching models. Ann. Appl. Probab. 19 (2009) 1232-1272. | MR | Zbl
, and .[18] Asymptotic behaviour of continuous time, continuous state-space branching processes. J. App. Probab. 11 (1974) 669-677. | MR | Zbl
.[19] Limit Theorems for Stochastic Processes, 2nd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 288. Springer-Verlag, Berlin, 2003. | MR | Zbl
and .[20] Stochastic branching processes with continuous state space. Czechoslovak Math. J. 8 (1958) 292-313. | MR | Zbl
.[21] Foundations of Modern Probability, 2nd edition. Probability and Its Applications (New York). Springer-Verlag, New York, 2002. | MR | Zbl
.[22] From flows of Lambda Fleming-Viot processes to lookdown processes via flows of partitions. Preprint, 2011. Available at arXiv:1107.3419.
.[23] Branching processes in Lévy processes: The exploration process. Ann. Probab. 26 (1998) 213-252. | MR | Zbl
and .[24] Coalescents with multiple collisions. Ann. Probab. 27 (1999) 1870-1902. | MR | Zbl
.[25] A new approach to local times. J. Math. Mech. 17 (1968) 1023-1054. | MR | Zbl
.[26] The behavior of superprocesses near extinction. Ann. Probab. 20 (1992) 286-311. | MR | Zbl
.[27] A limit theorem of branching processes and continuous state branching processes. J. Math. Kyoto Univ. 8 (1968) 141-167. | MR | Zbl
.Cité par Sources :