L’objetcif de ce papier est d’établir des inégalités de déviations et les principes de déviations modérées pour les estimateurs des moindres carrés des paramètres inconnus d’un processus bifurcant autorégressif asymétrique d’ordre , sous certaines conditions sur la suite des bruits. Les preuves reposent sur les principes de déviations modérées des martingales.
The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least squares estimators of the unknown parameters of general th-order asymmetric bifurcating autoregressive processes, under suitable assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.
Mots clés : deviation inequalities, moderate deviation principle, bifurcating autoregressive process, martingale, limit theorems, least squares estimation
@article{AIHPB_2014__50_3_806_0, author = {Bitseki Penda, S. Val\`ere and Djellout, Hac\`ene}, title = {Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {806--844}, publisher = {Gauthier-Villars}, volume = {50}, number = {3}, year = {2014}, doi = {10.1214/13-AIHP545}, mrnumber = {3224290}, zbl = {1302.60052}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/13-AIHP545/} }
TY - JOUR AU - Bitseki Penda, S. Valère AU - Djellout, Hacène TI - Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 806 EP - 844 VL - 50 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/13-AIHP545/ DO - 10.1214/13-AIHP545 LA - en ID - AIHPB_2014__50_3_806_0 ER -
%0 Journal Article %A Bitseki Penda, S. Valère %A Djellout, Hacène %T Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 806-844 %V 50 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/13-AIHP545/ %R 10.1214/13-AIHP545 %G en %F AIHPB_2014__50_3_806_0
Bitseki Penda, S. Valère; Djellout, Hacène. Deviation inequalities and moderate deviations for estimators of parameters in bifurcating autoregressive models. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 806-844. doi : 10.1214/13-AIHP545. http://archive.numdam.org/articles/10.1214/13-AIHP545/
[1] CLT for Ornstein-Uhlenbeck branching particle system. Preprint. Available at arXiv:1111.4559.
and .[2] Non-Gaussian bifurcating models and quasi-likelihood estimation. J. Appl. Probab. 41 (2004) 55-64. | MR | Zbl
and .[3] Asymtotic analysis for bifurcating autoregressive processes via martingale approach. Electron. J. Probab. 14 (2009) 2492-2526. | MR | Zbl
, and .[4] Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probab. 18 (2008) 1848-1869. | MR | Zbl
and .[5] Deviation inequalities, moderate deviations and some limit theorems for bifurcating Markov chains with application. Ann. Appl. Probab. 24 (2014) 235-291. | MR | Zbl
, and .[6] The bifurcating autoregressive model in cell lineage studies. Biometrics 42 (1986) 769-783. | Zbl
and .[7] Self-Normalized Processes. Limit Theory and Statistical Applications. Probability and Its Applications (New York). Springer-Verlag, Berlin, 2009. | MR | Zbl
, and .[8] Parameters estimation for asymmetric bifurcating autoregressive processes with missing data. Electron. J. Stat. 5 (2011) 1313-1353. | MR | Zbl
, and .[9] Asymmetry tests for bifurcating auto-regressive processes with missing data. Statist. Probab. Lett. 82 (2012) 1439-1444. | MR | Zbl
, and .[10] Detection of cellular aging in a Galton-Watson process. Stochastic Process. Appl. 120 (2010) 2495-2519. | MR | Zbl
and .[11] Moderate deviations for martingales with bounded jumps. Electron. Comm. Probab. 1 (1996) 11-17. | MR | Zbl
.[12] Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | MR | Zbl
and .[13] Moderate deviations for martingale differences and applications to -mixing sequences. Stoch. Stoch. Rep. 73 (2002) 37-63. | MR | Zbl
.[14] Moderate deviations of empirical periodogram and non-linear functionals of moving average processes. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 393-416. | Numdam | MR | Zbl
, and .[15] Large and moderate deviations for moving average processes. Ann. Fac. Sci. Toulouse Math. (6) 10 (2001) 23-31. | Numdam | MR | Zbl
and .[16] Integral criteria for transportation-cost inequalities. Electron. Comm. Probab. 11 (2006) 64-77. | MR | Zbl
.[17] A large deviation approach to some transportation cost inequalities. Probab. Theory Related Fields 139 (2007) 235-283. | MR | Zbl
and .[18] Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17 (2007) 1538-1569. | MR | Zbl
.[19] Extensions of the bifurcating autoregressive model for cell lineage studies. J. Appl. Probab. 36 (1999) 1225-1233. | MR | Zbl
and .[20] Inference for the extended bifurcating autoregressive model for cell lineage studies. Aust. N. Z. J. Stat. 42 (2000) 423-432. | MR | Zbl
and .[21] Local asymptotic normality for bifurcating autoregressive processes and related asymptotic inference. Stat. Methodol. 6 (2009) 61-69. | MR | Zbl
, and .[22] The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. American Mathematical Society, Providence, RI, 2001. | MR | Zbl
.[23] Concentration Inequalities and Model Selection. Lecture Notes in Mathematics 1896. Springer, Berlin, 2007. | MR | Zbl
.[24] Large deviations of semimartingales: A maxingale problem approach. I. Limits as solutions to a maxingale problem. Stoch. Stoch. Rep. 61 (1997) 141-243. | MR | Zbl
.[25] Moderate deviations for stable Markov chains and regression models. Electron. J. Probab. 4 (1999) 28 pp. | MR | Zbl
.[26] Moderate deviations of some dependent variables. I. Martingales. Math. Methods Statist. 10 (2001) 38-72. | MR | Zbl
.[27] Moderate deviations of some dependent variables. II. Some kernel estimators. Math. Methods Statist. 10 (2001) 161-193. | MR | Zbl
.[28] Least-squares estimation for bifurcating autoregressive processes. Statist. Probab. Lett. 74 (2005) 77-88. | MR | Zbl
and .[29] Maximum likelihood estimation for a first-order bifurcating autoregressive process with exponential errors. J. Time Series Anal. 26 (2005) 825-842. | MR | Zbl
and .Cité par Sources :