Une équation de Boltzmann linéaire est interprétée comme équation de Fokker-Planck associée à la densité de probabilité d’un processus de Markov sur , où est le tore bidimensionnel. Le processus Markovien est ici un processus de sauts réversible avec des temps d’attente entre deux sauts à moyenne finie mais variance infinie. est une fonctionnelle additive de , définie par , où pour petit. Nous prouvons que le processus converge en distribution vers un mouvement brownien bidimensionnel. En conséquence, et moyennant un changement d’échelle approprié, la solution de l’équation de Boltzmann converge vers celle d’ une équation de diffusion.
A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process on , where is the two-dimensional torus. Here is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. is an additive functional of , defined as , where for small . We prove that the rescaled process converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to the solution of a diffusion equation.
Mots-clés : anomalous thermal conductivity, kinetic limit, invariance principle
@article{AIHPB_2014__50_4_1301_0, author = {Basile, Giada}, title = {From a kinetic equation to a diffusion under an anomalous scaling}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1301--1322}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP554}, mrnumber = {3269995}, zbl = {06377555}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/13-AIHP554/} }
TY - JOUR AU - Basile, Giada TI - From a kinetic equation to a diffusion under an anomalous scaling JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1301 EP - 1322 VL - 50 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/13-AIHP554/ DO - 10.1214/13-AIHP554 LA - en ID - AIHPB_2014__50_4_1301_0 ER -
%0 Journal Article %A Basile, Giada %T From a kinetic equation to a diffusion under an anomalous scaling %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 1301-1322 %V 50 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/13-AIHP554/ %R 10.1214/13-AIHP554 %G en %F AIHPB_2014__50_4_1301_0
Basile, Giada. From a kinetic equation to a diffusion under an anomalous scaling. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1301-1322. doi : 10.1214/13-AIHP554. http://archive.numdam.org/articles/10.1214/13-AIHP554/
[1] Weak convergence of stochastic integrals related to counting processes. Z. Wahrsch. Verw. Gebiete 38 (1977) 261-277. | MR | Zbl
.[2] Energy transport in weakly anharmonic chain. J. Stat. Phys. 124 (2006) 1105-1129. | MR | Zbl
, and .[3] Convergence of a kinetic equation to a fractional diffusion equation. Markov Process. Related Fields 16 (2010) 15-44. | MR | Zbl
and .[4] Thermal conductivity for a momentum conserving model. Comm. Math. Phys. 287 (1) (2009) 67-98. | MR | Zbl
, and .[5] Energy transport in stochastically perturbed lattice dynamics. Arch. Ration. Mech. Anal. 195 (1) (2009) 171-203. | MR | Zbl
, and .[6] Coercive inequalities for Kawasaki dynamics. The product case. Markov Process. Related Fields 5 (1999) 125-162. | MR | Zbl
and .[7] Convergence of Probability Measures, 2nd edition. Wiley-Interscience, New York, 1999. | MR | Zbl
.[8] Heat transport in low-dimensional systems. Adv. Phys. 57 (2008) 457-537. DOI:10.1080/00018730802538522.
.[9] Functional limit theorems for dependent variables. Ann. Probab. 6 (1978) 829-849. | MR | Zbl
and .[10] Central limit theorems for dependent random variables. In Actes, Congrès int. Math. Tome 2 565-570. Gauthier-Villars, Paris, 1970. | MR | Zbl
.[11] Asymptotic normality for sums of dependent random variables. In Proc. Sixth Berkeley Symp. Math. Statist. Probability 513-535. Univ. California Press, Berkeley, 1972. | MR | Zbl
.[12] Brownian Motion and Diffusion. Holden-Day, San Francisco, 1971. | MR | Zbl
.[13] On tail probabilities for martingales. Ann. Probab. 3 (1975) 100-118. | MR | Zbl
.[14] Predel'nye raspredeleniya dlya summ nezavisimyh slučaĭnyh veličin. (Russian) [Limit Distributions for Sums of Independent Random Variables]. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1949. | MR
and .[15] Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19 (6) (2009) 2270-2300. | MR | Zbl
, and .[16] Dimensional crossover of thermal transport in few-layer graphene materials. Nature Materials 9 (2010) 555-558.
, , , , , and .[17] Central limit theorems for martingales with discrete or continuous time. Scand. J. Statist. 9 (1982) 79-94. | MR | Zbl
.[18] Normal heat conductivity in a strongly pinned chain of anharmonic oscillators. J. Stat. Mech. 2006 (2006) L02001. DOI:10.1088/1742-5468/2006/02/L02001.
and .[19] Thermal conduction in classical low-dimensional lattice. Phys. Rep. 377 (2003) 1-80. | MR
, and .[20] rates of convergence for attractive reversible nearest particle systems. Ann. Probab. 19 (1991) 935-959. | MR | Zbl
.[21] Kinetic limit for wave propagation in a random medium. Arch. Ration. Mech. Anal. 183 (2007) 93-162. | MR | Zbl
and .[22] Anomalous energy transport in the FPU- chain. Comm. Pure Appl. Math. 61 (2008) 1753-1789. | MR | Zbl
and .[23] Dependent central limit theorems and invariance principles. Ann. Probab. 2 (4) (1974) 620-628. | MR | Zbl
.[24] Fractional diffusion limit for collitional kinetic equations. Arch. Ration. Mech. Anal. 199 (2) (2011) 493-525. | MR | Zbl
, and .[25] Markov Chains and Stochastic Stability, 2nd edition. Cambridge Univ. Press, Cambridge, 2009. | MR | Zbl
and .[26] Zur kinetischen Theorie der Waermeleitung in Kristallen. Ann. Phys. 3 (1929) 1055-1101. | JFM
.[27] Fermi-Pasta-Ulam lattice: Peierls equation and anomalous heat conductivity. Phys. Rev. E 68 (2003) 056124. | MR
.[28] Weak Poincaré inequalities and -convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001) 564-603. | MR | Zbl
and .[29] Some invariance principles for random vectors in the generalized domain of attraction of the multivariate normal law. J. Theoret. Probab. 10 (4) (1997) 153-1063. | MR | Zbl
.[30] The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124 (2-4) (2006) 1041-1104. | MR | Zbl
.Cité par Sources :