Nous étudions le comportement asymptotique d’une classe de dynamiques aléatoires sur des configurations entrelacées de particules (dites aussi motifs de Gelfand–Tsetlin). Des exemples de telles dynamiques incluent, en particulier, une extension à plusieurs niveaux du TASEP et des dynamiques de particules reliées à l’algorithme de mélange pour les pavages par dominos du diamant aztèque. Nous montrons que le processus des mouvements browniens réfléchis entrelacés introduit par Warren dans (Electron. J. Probab. 12 (2007) 573–590) est une limite d’échelle universelle pour ces dynamiques.
We study the asymptotic behavior of a class of stochastic dynamics on interlacing particle configurations (also known as Gelfand–Tsetlin patterns). Examples of such dynamics include, in particular, a multi-layer extension of TASEP and particle dynamics related to the shuffling algorithm for domino tilings of the Aztec diamond. We prove that the process of reflected interlacing Brownian motions introduced by Warren in (Electron. J. Probab. 12 (2007) 573–590) serves as a universal scaling limit for such dynamics.
Mots-clés : interacting particle system, exclusion process, reflected brownian motion
@article{AIHPB_2015__51_1_18_0, author = {Gorin, Vadim and Shkolnikov, Mykhaylo}, title = {Limits of multilevel {TASEP} and similar processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {18--27}, publisher = {Gauthier-Villars}, volume = {51}, number = {1}, year = {2015}, doi = {10.1214/13-AIHP555}, mrnumber = {3300962}, zbl = {06412896}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/13-AIHP555/} }
TY - JOUR AU - Gorin, Vadim AU - Shkolnikov, Mykhaylo TI - Limits of multilevel TASEP and similar processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 18 EP - 27 VL - 51 IS - 1 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/13-AIHP555/ DO - 10.1214/13-AIHP555 LA - en ID - AIHPB_2015__51_1_18_0 ER -
%0 Journal Article %A Gorin, Vadim %A Shkolnikov, Mykhaylo %T Limits of multilevel TASEP and similar processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 18-27 %V 51 %N 1 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/13-AIHP555/ %R 10.1214/13-AIHP555 %G en %F AIHPB_2015__51_1_18_0
Gorin, Vadim; Shkolnikov, Mykhaylo. Limits of multilevel TASEP and similar processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 1, pp. 18-27. doi : 10.1214/13-AIHP555. http://archive.numdam.org/articles/10.1214/13-AIHP555/
[1] GUEs and queues. Probab. Theory Related Fields 119 (2) (2001) 256–274. | MR | Zbl
.[2] Elliptically distributed lozenge tilings of a hexagon. Available at arXiv:1110.4176. | Zbl
.[3] Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13 (2008) 1380–1418. Available at arXiv:0707.2813. | DOI | EuDML | MR | Zbl
and .[4] Anisotropic growth of random surfaces in 2 + 1 dimensions. Comm. Math. Phys. 325 (2014) 603–684. Available at arXiv:0804.3035. | DOI | MR | Zbl
and .[5] Shuffling algorithm for boxed plane partitions. Adv. Math. 220 (6) (2009) 1739–1770. Available at arXiv:0804.3071. | MR | Zbl
and .[6] Markov processes of infinitely many nonintersecting random walks. Probab. Theory Related Fields 155 (2013) 935–997. Available at arXiv:1106.1299. | DOI | MR | Zbl
and .[7] -distributions on boxed plane partitions. Selecta Math. (N.S.) 16 (4) (2010) 731–789. Available at arXiv:0905.0679. | MR | Zbl
, and .[8] Asymptotics of Plancherel measures for the infinite-dimensional unitary group. Adv. Math. 219 (3) (2008) 894–931. Available at arXiv:0712.1848. | MR | Zbl
and .[9] The Skorokhod problem in a time-dependent interval. Stoch. Process. Appl. 119 (2) (2009) 428–452. | MR | Zbl
, and .[10] Convex duality and the Skorokhod problem II. Probab. Theory Related Fields 115 (1999) 197–236. | DOI | MR | Zbl
and .[11] Alternating-sign matrices and domino tilings. II. J. Algebraic Combin. 1 (3) (1992) 219–234. | MR | Zbl
, , and .[12] Markov Processes: Characterization and Convergence. Wiley, New York, 1986. | MR | Zbl
and .[13] Reflected Brownian motion on an orthant. Ann. Probab. 9 (2) (1981) 302–308. | MR | Zbl
and .[14] Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. of Math. (2) 153 (1) (2001) 259–296. | MR | Zbl
.[15] The arctic circle boundary and the Airy process. Ann. Probab. 33 (1) (2005) 1–30. | MR | Zbl
.[16] Eigenvalues of GUE minors. Electron. J. Probab. 11 (2006) 1342–1371 (electronic). | DOI | MR | Zbl
and .[17] On the shuffling algorithm for domino tilings. Electon. J. Probab. 15 (2010) 75–95. Available at arXiv:0802.2592. | MR | Zbl
.[18] A path-transformation for random walks and the Robinson–Schensted correspondence. Trans. Amer. Math. Soc. 355 (2003) 3669–3697. | DOI | MR | Zbl
.[19] Conditioned random walks and the RSK correspondence. J. Phys. A: Math. Gen. 36 (2003) 3049–3066. | MR | Zbl
.[20] The birth of a random matrix. Mosc. Math. J. 6 (3) (2006) 553–566. | MR | Zbl
and .[21] Bethe Ansatz and current distribution for the TASEP with particle-dependent hopping rates. Markov Process. Related Fields 12 (2006) 323–334. Available at arXiv:cond-mat/0506525. | MR | Zbl
and .[22] Dyson’s Brownian motions, intertwining and interlacing. Electon. J. Probab. 12 (2007) 573–590. Available at arXiv:math/0509720. | MR | Zbl
.[23] Some examples of dynamics for Gelfand Tsetlin patterns. Electon. J. Probab. 14 (2009) 1745–1769. Available at arXiv:0812.0022. | MR | Zbl
and .Cité par Sources :