Dans cet article on étudie l’équation parabolique d’Anderson , , , où les champs et sont à valeurs dans , est la constante de diffusion, et est le laplacien discret. Le champ joue le rôle d’environnement aléatoire dynamique et dirige l’équation. La condition initiale , , est choisie positive et bornée. La solution de l’équation parabolique d’Anderson décrit l’évolution d’un champ de particules effectuant des marches aléatoires simples avec un branchement binaire : les particules sautent au taux , se divisent en deux au taux , et meurent au taux . Notre but est de prouver un certain nombre de propriétés basiques de la solution sous des conditions sur qui sont aussi faibles que possible. Ces propriétés vont servir d’impulsion pour de futur améliorations. Tout au long de cet article nous supposons que est stationnaire et ergodique sous les translations en espace et en temps, n’est pas constant et satisfait , où représente l’espérance par rapport à . Sous une hypothèse très faible sur les queues de la distribution de , nous montrons que la solution de l’équation parabolique d’Anderson existe et est unique pour tout . Notre principal objet d’intérêt est l’exposant de Lyapunov quenched . Il a été prouvé dans Gärtner, den Hollander et Maillard (In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner (2012) 159-193 Springer) que cet exposant existe et est constant -a.s., satisfait et pour , et est tel que est globalement lipschitzienne sur à l’extérieur de n’importe quel voisinage de où il est fini. Sous certaines conditions faibles de mélange en espace-temps sur , nous montrons les propriétés suivantes : (1) ne dépend pas de la condition initiale ; (2) pour tout ; (3) est continue sur mais pas lipschitzienne en . Nous conjecturons en outre : (4) pour tout , où est le -ième exposant de Lyapunov annealed. (Dans (In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner (2012) 159-193 Springer) les propriétés (1), (2) et (4) n’ont pas été abordées, tandis que la propriété (3) a été prouvée sous des hypothèses beaucoup plus restrictives sur .) Finalement, nous prouvons que nos conditions faibles de mélange en espace-temps sur sont satisfaites par plusieurs systèmes de particules en interaction.
In this paper we study the parabolic Anderson equation , , , where the -field and the -field are -valued, is the diffusion constant, and is the discrete Laplacian. The -field plays the role of a dynamic random environment that drives the equation. The initial condition , , is taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump at rate , split into two at rate , and die at rate . Our goal is to prove a number of basic properties of the solution under assumptions on that are as weak as possible. These properties will serve as a jump board for later refinements. Throughout the paper we assume that is stationary and ergodic under translations in space and time, is not constant and satisfies , where denotes expectation w.r.t. . Under a mild assumption on the tails of the distribution of , we show that the solution to the parabolic Anderson equation exists and is unique for all . Our main object of interest is the quenched Lyapunov exponent . It was shown in Gärtner, den Hollander and Maillard (In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner (2012) 159-193 Springer) that this exponent exists and is constant -a.s., satisfies and for , and is such that is globally Lipschitz on outside any neighborhood of where it is finite. Under certain weak space-time mixing assumptions on , we show the following properties: (1) does not depend on the initial condition ; (2) for all ; (3) is continuous on but not Lipschitz at . We further conjecture: (4) for all , where is the th annealed Lyapunov exponent. (In (In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner (2012) 159-193 Springer) properties (1), (2) and (4) were not addressed, while property (3) was shown under much more restrictive assumptions on .) Finally, we prove that our weak space-time mixing conditions on are satisfied for several classes of interacting particle systems.
Mots-clés : parabolic Anderson equation, percolation, quenched Lyapunov exponent, large deviations, interacting particle systems
@article{AIHPB_2014__50_4_1231_0, author = {Erhard, D. and den Hollander, F. and Maillard, G.}, title = {The parabolic {Anderson} model in a dynamic random environment: {Basic} properties of the quenched {Lyapunov} exponent}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1231--1275}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP558}, mrnumber = {3269993}, zbl = {06377553}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/13-AIHP558/} }
TY - JOUR AU - Erhard, D. AU - den Hollander, F. AU - Maillard, G. TI - The parabolic Anderson model in a dynamic random environment: Basic properties of the quenched Lyapunov exponent JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1231 EP - 1275 VL - 50 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/13-AIHP558/ DO - 10.1214/13-AIHP558 LA - en ID - AIHPB_2014__50_4_1231_0 ER -
%0 Journal Article %A Erhard, D. %A den Hollander, F. %A Maillard, G. %T The parabolic Anderson model in a dynamic random environment: Basic properties of the quenched Lyapunov exponent %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 1231-1275 %V 50 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/13-AIHP558/ %R 10.1214/13-AIHP558 %G en %F AIHPB_2014__50_4_1231_0
Erhard, D.; den Hollander, F.; Maillard, G. The parabolic Anderson model in a dynamic random environment: Basic properties of the quenched Lyapunov exponent. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1231-1275. doi : 10.1214/13-AIHP558. http://archive.numdam.org/articles/10.1214/13-AIHP558/
[1] Invariant measure for the zero range process. Ann. Probab. 10 (1982) 525-547. | MR | Zbl
.[2] Parabolic Anderson Problem and Intermittency. AMS Memoirs 518. American Mathematical Society, Providence, RI, 1994. | MR | Zbl
and .[3] Large deviations for Poisson systems of independent random walks. Z. Wahrsch. Verw. Gebiete 66 (1984) 543-558. | MR | Zbl
and .[4] Lyapunov exponents for the parabolic Anderson model. Acta Math. Univ. Comenian. (N.S.) 71 (2002) 163-188. | MR | Zbl
, and .[5] Survival probability of a random walk among a Poisson system of moving traps. In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner 119-158. J.-D. Deuschel, B. Gentz, W. König, M.-K. van Renesse, M. Scheutzow and U. Schmock (Eds). Springer Proceedings in Mathematics 11. Springer, Berlin, 2012. | Zbl
, , and .[6] On an elementary proof of some asymptotic formulas in the theory of partitions. Ann. Math. 43 (1942) 437-450. | MR | Zbl
.[7] Intermittency in a catalytic random medium. Ann. Probab. 34 (2006) 2219-2287. | MR | Zbl
and .[8] Quenched Lyapunov exponent for the parabolic Anderson model in a dynamic random environment. In Probability in Complex Physical Systems. In Honour of Erwin Bolthausen and Jürgen Gärtner 159-193. J.-D. Deuschel, B. Gentz, W. König, M.-K. van Renesse, M. Scheutzow and U. Schmock (Eds). Springer Proceedings in Mathematics 11. Springer, Berlin, 2012. | Zbl
, and .[9] Parabolic problems for the Anderson model. Comm. Math. Phys. 132 (1990) 613-655. | MR | Zbl
and .[10] Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. (3) 17 (1918) 75-115. | JFM | MR
and .[11] Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 320. Springer, Berlin, 1999. | MR | Zbl
and .[12] Branching random walks with catalysts. Electron. J. Probab. 8 (2003) 1-51. | MR | Zbl
and .[13] Occupation time large deviations for the symmetric simple exclusion process. Ann. Probab. 20 (1992) 206-231. | MR | Zbl
.[14] Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften 276. Springer, New York, 1985. | MR | Zbl
.[15] Concentration of additive functionals for Markov processes. Preprint, 2011. Available at http://arXiv.org/abs/1003.0006v2.
and .[16] Feynman-Kac semigroups, ground state diffusions, and large deviations. J. Funct. Anal. 123 (1994) 202-231. | MR | Zbl
.[17] A deviation inequality for non-reversible Markov processes. Ann. Inst. Henri Poincaré Probab. Stat. 4 (2000) 435-445. | Numdam | MR | Zbl
.Cité par Sources :