On smoothing properties of transition semigroups associated to a class of SDEs with jumps
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1347-1370.

Nous établissons des propriétés de lissage de semi-groupes de transition non locaux associés à une classe d’équations différentielles stochastiques dans d dirigées par un bruit additif de Lévy sans partie continue. En particulier, nous supposons que le processus de Lévy est la somme d’un processus de Wiener subordonné Y (i.e. Y=WT, où T est un processus croissant de Lévy sans partie continue, avec T 0 =0, indépendant du processus de Wiener W) et d’un processus de Lévy arbitraire indépendant de Y; que le coefficient de dérive est continu (mais pas nécessairement lipschitzien) et à croissance polynomiale; et que la EDS admet une solution faible fellerienne. Par une combinaison de méthodes probabilistes et analytiques, nous fournissons des conditions suffisantes pour le semi-groupe markovien associé à l’EDS soit fortement fellérien et envoye L p ( d ) dans les fonctions continues bornées. Une étape intermédiaire essentielle est l’étude de certaines propriétés régularisantes du semi-groupe de transition associé à Y qui dépendent de moments négatifs du subordinateur T.

We prove smoothing properties of nonlocal transition semigroups associated to a class of stochastic differential equations (SDE) in d driven by additive pure-jump Lévy noise. In particular, we assume that the Lévy process driving the SDE is the sum of a subordinated Wiener process Y (i.e. Y=WT, where T is an increasing pure-jump Lévy process starting at zero and independent of the Wiener process W) and of an arbitrary Lévy process independent of Y, that the drift coefficient is continuous (but not necessarily Lipschitz continuous) and grows not faster than a polynomial, and that the SDE admits a Feller weak solution. By a combination of probabilistic and analytic methods, we provide sufficient conditions for the Markovian semigroup associated to the SDE to be strong Feller and to map L p ( d ) to continuous bounded functions. A key intermediate step is the study of regularizing properties of the transition semigroup associated to Y in terms of negative moments of the subordinator T.

DOI : 10.1214/13-AIHP559
Classification : 60G30, 60G51, 60H07, 60H10, 60J35
Mots-clés : Lévy processes, subordination, transition semigroups, non-local operators, Malliavin calculus
@article{AIHPB_2014__50_4_1347_0,
     author = {Kusuoka, Seiichiro and Marinelli, Carlo},
     title = {On smoothing properties of transition semigroups associated to a class of {SDEs} with jumps},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1347--1370},
     publisher = {Gauthier-Villars},
     volume = {50},
     number = {4},
     year = {2014},
     doi = {10.1214/13-AIHP559},
     mrnumber = {3269997},
     zbl = {06377557},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/13-AIHP559/}
}
TY  - JOUR
AU  - Kusuoka, Seiichiro
AU  - Marinelli, Carlo
TI  - On smoothing properties of transition semigroups associated to a class of SDEs with jumps
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2014
SP  - 1347
EP  - 1370
VL  - 50
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/13-AIHP559/
DO  - 10.1214/13-AIHP559
LA  - en
ID  - AIHPB_2014__50_4_1347_0
ER  - 
%0 Journal Article
%A Kusuoka, Seiichiro
%A Marinelli, Carlo
%T On smoothing properties of transition semigroups associated to a class of SDEs with jumps
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2014
%P 1347-1370
%V 50
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/13-AIHP559/
%R 10.1214/13-AIHP559
%G en
%F AIHPB_2014__50_4_1347_0
Kusuoka, Seiichiro; Marinelli, Carlo. On smoothing properties of transition semigroups associated to a class of SDEs with jumps. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1347-1370. doi : 10.1214/13-AIHP559. http://archive.numdam.org/articles/10.1214/13-AIHP559/

[1] V. Bally and E. Clément. Integration by parts formula and applications to equations with jumps. Probab. Theory Related Fields 151 (3-4) (2011) 6133-657. | MR | Zbl

[2] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl

[3] J.-M. Bismut. Calcul des variations stochastique et processus de sauts. Z. Wahrsch. Verw. Gebiete 63 (2) (1983) 147-235. | MR | Zbl

[4] V. I. Bogachev. Gaussian Measures. Mathematical Surveys and Monographs 62. American Mathematical Society, Providence, RI, 1998. | MR | Zbl

[5] K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song and Z. Vondraček. Potential Analysis of Stable Processes and Its Extensions. Lecture Notes in Mathematics 1980. Springer, Berlin, 2009. | MR

[6] B. Brainerd and R. E. Edwards. Linear operators which commute with translations. I. Representation theorems. J. Austral. Math. Soc. 6 (1966) 289-327. | MR | Zbl

[7] L. Caffarelli, C. H. Chan and A. Vasseur. Regularity theory for parabolic nonlinear integral operators. J. Amer. Math. Soc. 24 (3) (2011) 849-869. | MR | Zbl

[8] M. Gordina, M. Röckner and F.-Y. Wang. Dimension-independent Harnack inequalities for subordinated semigroups. Potential Anal. 34 (3) (2011) 293-307. | MR | Zbl

[9] I. Gyöngy and N. V. Krylov. On stochastic equations with respect to semimartingales. I. Stochastics 4 (1) (1980/81) 1-21. | MR | Zbl

[10] P. Hartman and A. Wintner. On the infinitesimal generators of integral convolutions. Amer. J. Math. 64 (1942) 273-298. | MR | Zbl

[11] J. Hawkes. Potential theory of Lévy processes. Proc. London Math. Soc. (3) 38 (2) (1979) 335-352. | MR | Zbl

[12] Y. Ishikawa and H. Kunita. Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps. Stochastic Process. Appl. 116 (12) (2006) 1743-1769. | MR | Zbl

[13] J. Jacod. Une condition d'existence et d'unicité pour les solutions fortes d'équations différentielles stochastiques. Stochastics 4 (1) (1980/81) 23-38. | MR | Zbl

[14] V. Knopova and R. Schilling. A note on the existence of transition probability densities of Lévy processes. Forum Math. 25 125-149. | MR | Zbl

[15] H. Kunita. Smooth density of canonical stochastic differential equation with jumps. Astérisque 327 (2009) 69-91. | Numdam | MR | Zbl

[16] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1) (1985) 1-76. | MR | Zbl

[17] S. Kusuoka. Malliavin calculus for stochastic differential equations driven by subordinated Brownian motions. Kyoto J. Math. 50 (3) (2010) 491-520. | MR | Zbl

[18] R. Léandre. Calcul des variations sur un Brownien subordonné. In Séminaire de Probabilités, XXII 414-433. Lecture Notes in Math. 1321. Springer, Berlin, 1988. | Numdam | MR | Zbl

[19] J.-P. Lepeltier and B. Marchal. Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel. Ann. Inst. H. Poincaré Sect. B (N.S.) 12 (1) (1976) 43-103. | Numdam | MR | Zbl

[20] C. Marinelli, C. Prévôt and M. Röckner. Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise. J. Funct. Anal. 258 (2) (2010) 616-649. | MR | Zbl

[21] C. Marinelli and M. Röckner. Well-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise. Electron. J. Probab. 15 (49) (2010) 1528-1555. | MR | Zbl

[22] M. Métivier. Semimartingales. de Gruyter, Berlin, 1982. | MR | Zbl

[23] R. Mikulevičius and H. Pragarauskas. On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces. Liet. Mat. Rink. 32 (2) (1992) 299-331. | Zbl

[24] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, 1983. | MR | Zbl

[25] E. Priola and J. Zabczyk. Liouville theorems for non-local operators. J. Funct. Anal. 216 (2) (2004) 455-490. | MR | Zbl

[26] E. Priola and J. Zabczyk. Structural properties of semilinear SPDEs driven by cylindrical stable processes. Probab. Theory Related Fields 149 (2011) (1-2), 97-137. | MR | Zbl

[27] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Chapman & Hall, New York, 1994. | MR | Zbl

[28] R. L. Schilling and J. Wang. Strong Feller continuity of Feller processes and semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 15 (2) (2012) 1250010. | MR | Zbl

[29] H. Triebel. Theory of Function Spaces. Birkhäuser, Basel, 1983. | MR | Zbl

Cité par Sources :