On considère des matrices aléatoires à structure bande dont la bande a pour largeur et dont les coefficients sont indépendants à queue de distribution en . On s’intéresse aux plus grandes valeurs propres et aux vecteurs propres associés et prouve la transition de phase suivante. D’une part, quand , les plus grandes valeurs propres ont pour ordre , sont asymptotiquement distribuées selon un processus de Poisson et les vecteurs propres associés sont essentiellement portés par deux coordonnées (ce phénomène a déjà été remarqué pour des matrices pleines par Soshnikov dans (Electron. Comm. Probab. 9 (2004) 82-91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles (2006) 351-364) quand , et par Auffinger et al. dans (Ann. Inst. H. Poincarè Probab. Statist. 45 (2005) 589-610) quand ). D’autre part, quand , les plus grandes valeurs propres ont pour ordre et la plupart des vecteurs propres de la matrice sont délocalisés, i.e. approximativement uniformément distribués sur leurs coordonnées.
We consider some random band matrices with band-width whose entries are independent random variables with distribution tail in . We consider the largest eigenvalues and the associated eigenvectors and prove the following phase transition. On the one hand, when , the largest eigenvalues have order , are asymptotically distributed as a Poisson process and their associated eigenvectors are essentially carried by two coordinates (this phenomenon has already been remarked for full matrices by Soshnikov in (Electron. Comm. Probab. 9 (2004) 82-91, In Poisson Statistics for the Largest Eigenvalues in Random Matrix Ensembles (2006) 351-364) when and by Auffinger et al. in (Ann. Inst. H. Poincarè Probab. Statist. 45 (2005) 589-610) when ). On the other hand, when , the largest eigenvalues have order and most eigenvectors of the matrix are delocalized, i.e. approximately uniformly distributed on their coordinates.
Mots-clés : random matrices, band matrices, heavy tailed random variables
@article{AIHPB_2014__50_4_1385_0, author = {Benaych-Georges, Florent and P\'ech\'e, Sandrine}, title = {Localization and delocalization for heavy tailed band matrices}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1385--1403}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP562}, mrnumber = {3269999}, zbl = {06377559}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/13-AIHP562/} }
TY - JOUR AU - Benaych-Georges, Florent AU - Péché, Sandrine TI - Localization and delocalization for heavy tailed band matrices JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1385 EP - 1403 VL - 50 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/13-AIHP562/ DO - 10.1214/13-AIHP562 LA - en ID - AIHPB_2014__50_4_1385_0 ER -
%0 Journal Article %A Benaych-Georges, Florent %A Péché, Sandrine %T Localization and delocalization for heavy tailed band matrices %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 1385-1403 %V 50 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/13-AIHP562/ %R 10.1214/13-AIHP562 %G en %F AIHPB_2014__50_4_1385_0
Benaych-Georges, Florent; Péché, Sandrine. Localization and delocalization for heavy tailed band matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1385-1403. doi : 10.1214/13-AIHP562. http://archive.numdam.org/articles/10.1214/13-AIHP562/
[1] Poisson convergence for the largest eigenvalues of heavy tailed random matrices. Ann. Inst. Henri Poincaré Probab. Statist. 45 (3) (2009) 589-610. | Numdam | MR | Zbl
, and .[2] Spectral Analysis of Large Dimensional Random Matrices, 2nd edition. Springer, New York, 2009. | MR | Zbl
and .[3] Matrix Analysis. Graduate Texts in Mathematics 169. Springer, New York, 1997. | MR | Zbl
.[4] Perturbation Bounds for Matrix Eigenvalues. Classics in Applied Mathematics 53. Reprint of the 1987 original. SIAM, Philadelphia, PA, 2007. | MR | Zbl
.[5] The spectrum of heavy tailed random matrices. Comm. Math. Phys. 278 (3) (2007) 715-751. | MR | Zbl
and .[6] Regular Variation. Cambridge Univ. Press, Cambridge, 1989. | MR | Zbl
, and .[7] Localization and delocalization of eigenvectors for heavy-tailed random matrices. Preprint. Available at arXiv:1201.1862. | MR | Zbl
and .[8] Theory of Lévy matrices. Phys. Rev. E 50 (1994) 1810-1822.
and .[9] Combinatorial Methods in Density Estimation. Springer, New York, 2001. | MR | Zbl
and .[10] Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk 66 (2011) 67-198. | MR | Zbl
.[11] Quantum diffusion and eigenfunction delocalization in a random band matrix model. Comm. Math. Phys. 303 (2) (2011) 509-554. | MR | Zbl
and .[12] Quantum diffusion and delocalization for band matrices with general distribution. Ann. Henri Poincaré 12 (7) (2011) 1227-1319. | MR | Zbl
and .[13] Delocalization and diffusion profile for random band matrices. Comm. Math. Phys. 323 (2013) 367-416. | MR | Zbl
, , and .[14] Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys. 287 (2009), 641-655. | MR | Zbl
, and .[15] Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Prob. 37 (2009) 815-852. | MR | Zbl
, and .[16] Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. 2010 (2010) 436-479. | MR | Zbl
, and .[17] An Introduction to Probability Theory and Its Applications, vol. II, 2nd edition. Wiley, New York, 1966. | MR | Zbl
.[18] Scaling properties of localization in random band matrices: A -model approach. Phys. Rev. Lett. 67 (18) (1991) 2405-2409. | MR | Zbl
and .[19] Eigenvector distribution of Wigner matrices. Probab. Theory Related Fields 155 (2013) 543-582. | MR | Zbl
and .[20] The outliers of a deformed Wigner matrix. Preprint, 2012. Available at arXiv:1207.5619v1. | MR
and .[21] Extremes and Related Properties of Random Sequences and Processes. Springer, New York, 1983. | MR | Zbl
, and .[22] Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys. 129 (5-6) (2007) 857-884. | MR | Zbl
and .[23] Extreme Values, Regular Variation and Point Processes. Springer, New York, 1987. | MR | Zbl
.[24] Eigenvector localization for random band matrices with power law band width. Comm. Math. Phys. 290 (3) (2009) 1065-1097. | MR | Zbl
.[25] A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices. (Russian). Funktsional. Anal. i Prilozhen. 32 (2) (1998) 56-79. 96; translation in Funct. Anal. Appl. 32 (1998), no. 2, 114-131. | MR | Zbl
and .[26] The spectral edge of some random band matrices. Ann. Math. 172 (2010) 2223-2251. | MR | Zbl
.[27] Central limit theorem for traces of large random symmetric matrices. Bol. Soc. Brasil. Mat. 29 (1) (1998) 1-24. | MR | Zbl
and .[28] Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys. 207 (3) (1999) 697-733. | MR | Zbl
.[29] Poisson statistics for the largest eigenvalues of Wigner random matrices with heavy tails. Electron. Comm. Probab. 9 (2004) 82-91. | EuDML | MR | Zbl
.[30] Poisson statistics for the largest eigenvalues in random matrix ensembles. In Mathematical Physics of Quantum Mechanics 351-364. Lecture Notes in Phys. 690. Springer, Berlin, 2006. | MR | Zbl
.[31] Random banded and sparse matrices. In The Oxford Handbook of Random Matrix Theory 471-488. Oxford Univ. Press, Oxford, 2011. | MR | Zbl
.[32] Random matrices: Universal properties of eigenvectors. Random Matrices Theory Appl. 1 (2012) 1150001. | MR | Zbl
and .[33] Random matrices: Universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298 (2) (2010) 549-572. | MR | Zbl
and .Cité par Sources :