Nous démontrons deux théorèmes d’universalité pour les tenseurs aléatoires de rang quelconque. Nous montrons d’abord qu’un tenseur aléatoire dont les entrées sont variables complexes indépendantes identiquement distribuées converge en distribution dans la limite grand vers la même limite que la limite en distribution d’un modèle de tenseurs Gaussien. Cela généralise l’universalité des matrices aléatoires aux tenseurs aléatoires. Nous démontrons ensuite un deuxième théorème d’universalité, plus fort. Sous l’hypothèse que la distribution de probabilité jointe des entrées du tenseur est invariante, et en supposant que les cumulants de cette distribution invariante sont uniformément bornés, nous prouvons que dans la limite grand le tenseur converge à nouveau en distribution vers la même limite que la limite en distribution d’un modèle de tenseurs Gaussien. La covariance de la distribution Gaussienne à grand n'est pas universelle, mais dépend des détails de la distribution jointe.
We prove two universality results for random tensors of arbitrary rank . We first prove that a random tensor whose entries are independent, identically distributed, complex random variables converges in distribution in the large limit to the same limit as the distributional limit of a Gaussian tensor model. This generalizes the universality of random matrices to random tensors. We then prove a second, stronger, universality result. Under the weaker assumption that the joint probability distribution of tensor entries is invariant, assuming that the cumulants of this invariant distribution are uniformly bounded, we prove that in the large limit the tensor again converges in distribution to the distributional limit of a Gaussian tensor model. We emphasize that the covariance of the large Gaussian is not universal, but depends strongly on the details of the joint distribution.
Mots-clés : random tensors, large $N$ limit
@article{AIHPB_2014__50_4_1474_0, author = {Gurau, Razvan}, title = {Universality for random tensors}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1474--1525}, publisher = {Gauthier-Villars}, volume = {50}, number = {4}, year = {2014}, doi = {10.1214/13-AIHP567}, mrnumber = {3270002}, zbl = {06377562}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/13-AIHP567/} }
TY - JOUR AU - Gurau, Razvan TI - Universality for random tensors JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 1474 EP - 1525 VL - 50 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/13-AIHP567/ DO - 10.1214/13-AIHP567 LA - en ID - AIHPB_2014__50_4_1474_0 ER -
Gurau, Razvan. Universality for random tensors. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1474-1525. doi : 10.1214/13-AIHP567. http://archive.numdam.org/articles/10.1214/13-AIHP567/
[1] Trees, forests and jungles: A botanical garden for cluster expansions. In Constructive Physics. V. Rivasseau (Ed). Lecture Notes in Physics 446. Springer, Berlin, 1995. | MR | Zbl
and .[2] Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A 6 (1991) 1133-1146. | MR | Zbl
, and .[3] An Introduction to Random Matrices. Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge, 2009. | MR | Zbl
, and .[4] A renormalizable 4-dimensional tensor field theory. Comm. Math. Phys. 318 69-109. Available at arXiv:1111.4997 [hep-th]. | MR | Zbl
and .[5] Critical behavior of colored tensor models in the large limit. Nucl. Phys. B 853 (2011) 174-195. Available at arXiv:1105.3122 [hep-th]. | MR | Zbl
, , and .[6] Random tensor models in the large limit: Uncoloring the colored tensor models. Phys. Rev. D 85 (2012) 084037. Available at arXiv:1202.3637 [hep-th]. | MR
, and .[7] Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability. Int. Math. Res. Not. 17 (2003) 953-982. Available at arXiv:math-ph/0205010. | MR | Zbl
.[8] Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Comm. Math. Phys. 264 (2006) 773-795. Available at arXiv:math-ph/0402073. | MR | Zbl
and .[9] Hopf algebras, renormalization and noncommutative geometry. Comm. Math. Phys. 199 (1998) 203-242. Available at arXiv:hep-th/9808042. | MR | Zbl
and .[10] Insertion and elimination: The doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3 (2002) 411-433. Available at arXiv:hep-th/0201157. | MR | Zbl
and .[11] Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3 (1962) 140-156. | MR | Zbl
.[12] Correlations between eigenvalues of a random matrix. Comm. Math. Phys. 19 (1970) 235-250. | MR | Zbl
.[13] Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk 66 (2011) 67-198. Available at arXiv:1004.0861v2 [math-ph]. | MR | Zbl
.[14] Renormalization theory in four-dimensional scalar fields. I. Comm. Math. Phys. 100 (1985) 545-590. | MR
and .[15] Quantum Physics. A Functional Integral Point of View, 2nd edition. Springer, New York, 1987. | MR | Zbl
and .[16] Tensor models and simplicial quantum gravity in 2-D. Nucl. Phys. Proc. Suppl. 25A (1992) 144-149. | MR | Zbl
.[17] Renormalization of theory on noncommutative in the matrix base. Comm. Math. Phys. 256 (2005) 305-374. Available at arXiv:hep-th/0401128. | MR | Zbl
and .[18] Lost in translation: Topological singularities in group field theory. Class. Quant. Grav. 27 (2010) 235023. Available at arXiv:1006.0714 [hep-th]. | MR | Zbl
.[19] The expansion of colored tensor models. Ann. Henri Poincaré 12 (2011) 829-847. Available at arXiv:1011.2726 [gr-qc]. | MR | Zbl
.[20] The complete expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincaré 13 (2011) 399-423. Available at arXiv:1102.5759 [gr-qc]. | MR | Zbl
.[21] Colored group field theory. Comm. Math. Phys. 304 (2011) 69-93. Available at arXiv:0907.2582 [hep-th]. | MR | Zbl
.[22] A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B 852 (2011) 592-614. Available at arXiv:1105.6072 [hep-th]. | MR | Zbl
.[23] The expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95 (2011) 50004. Available at arXiv:1101.4182 [gr-qc]. | MR | Zbl
and .[24] Colored tensor models - A review. SIGMA 8 (2012) 020. Available at arXiv:1109.4812 [hep-th]. | MR | Zbl
and .[25] Graphs on Surfaces and Their Applications. Encyclopaedia of Mathematical Sciences 141. Springer, Berlin, 2004. | MR | Zbl
, , and .[26] Elementary acceleration and multisummability I. Ann. Inst. H. Poincaré Phys. Théor. 54 (1991) 331-401. | Numdam | MR | Zbl
and .[27] Random Matrices. Pure and Applied Mathematics (Amsterdam) 142. Elsevier/Academic Press, Amsterdam, 2004. | MR | Zbl
.[28] Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
and .[29] Eigenvalue Distribution of Large Random Matrices. Mathematical Surveys and Monographs 171. Amer. Math. Soc., Providence, RI, 2011. | MR | Zbl
and .[30] From Perturbative to Constructive Renormalization, 2nd edition. Princeton Univ. Press, Princeton, 1991. | MR
.[31] Constructive matrix theory. JHEP 0709 (2007) 008. Available at arXiv:0706.1224 [hep-th]. | MR
.[32] Loop vertex expansion for theory in zero dimension. J. Math. Phys. 51 (2010) 092304. Available at arXiv:1003.1037 [math-ph]. | MR
and .[33] An improvement of Watson's theorem on Borel summability. J. Math. Phys. 21 (1980) 261-263. | MR | Zbl
.[34] Multiplicative functions on the lattice of non-crossing partitions and free convolution. Math. Ann. 298 (1994) 611-628. | MR | Zbl
.[35] G. 't Hooft. A planar diagram theory for strong interactions. Nucl. Phys. B 72 (1974) 461-473.
[36] Random matrices: Universality of local eigenvalue statistics. Acta Math. 206 (1) (2011) 127-204. Available at arXiv:0906.0510v10. | MR | Zbl
and .[37] Symmetries of some reduced free product -algebras. In Operator Algebras and Their Connections with Topology and Ergodic Theory (Buşteni, 1983) 556-588. Lecture Notes in Mathematics 1132. Springer, New York, 1983. | MR | Zbl
.[38] Limit laws for random matrices and free products. Invent. Math. 104 (1991) 201-220. | MR | Zbl
.[39] Free Random Variables. CRM Monograph Series 1. Amer. Math. Soc., Providence, RI, 1992. | MR | Zbl
, and .Cité par Sources :