Universality for random tensors
Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1474-1525.

Nous démontrons deux théorèmes d’universalité pour les tenseurs aléatoires de rang D quelconque. Nous montrons d’abord qu’un tenseur aléatoire dont les entrées sont N D variables complexes indépendantes identiquement distribuées converge en distribution dans la limite N grand vers la même limite que la limite en distribution d’un modèle de tenseurs Gaussien. Cela généralise l’universalité des matrices aléatoires aux tenseurs aléatoires. Nous démontrons ensuite un deuxième théorème d’universalité, plus fort. Sous l’hypothèse que la distribution de probabilité jointe des entrées du tenseur est invariante, et en supposant que les cumulants de cette distribution invariante sont uniformément bornés, nous prouvons que dans la limite N grand le tenseur converge à nouveau en distribution vers la même limite que la limite en distribution d’un modèle de tenseurs Gaussien. La covariance de la distribution Gaussienne à N grand n'est pas universelle, mais dépend des détails de la distribution jointe.

We prove two universality results for random tensors of arbitrary rank D. We first prove that a random tensor whose entries are N D independent, identically distributed, complex random variables converges in distribution in the large N limit to the same limit as the distributional limit of a Gaussian tensor model. This generalizes the universality of random matrices to random tensors. We then prove a second, stronger, universality result. Under the weaker assumption that the joint probability distribution of tensor entries is invariant, assuming that the cumulants of this invariant distribution are uniformly bounded, we prove that in the large N limit the tensor again converges in distribution to the distributional limit of a Gaussian tensor model. We emphasize that the covariance of the large N Gaussian is not universal, but depends strongly on the details of the joint distribution.

DOI : 10.1214/13-AIHP567
Classification : 60B99, 60F99
Mots-clés : random tensors, large $N$ limit
@article{AIHPB_2014__50_4_1474_0,
     author = {Gurau, Razvan},
     title = {Universality for random tensors},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1474--1525},
     publisher = {Gauthier-Villars},
     volume = {50},
     number = {4},
     year = {2014},
     doi = {10.1214/13-AIHP567},
     mrnumber = {3270002},
     zbl = {06377562},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/13-AIHP567/}
}
TY  - JOUR
AU  - Gurau, Razvan
TI  - Universality for random tensors
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2014
SP  - 1474
EP  - 1525
VL  - 50
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/13-AIHP567/
DO  - 10.1214/13-AIHP567
LA  - en
ID  - AIHPB_2014__50_4_1474_0
ER  - 
%0 Journal Article
%A Gurau, Razvan
%T Universality for random tensors
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2014
%P 1474-1525
%V 50
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/13-AIHP567/
%R 10.1214/13-AIHP567
%G en
%F AIHPB_2014__50_4_1474_0
Gurau, Razvan. Universality for random tensors. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 4, pp. 1474-1525. doi : 10.1214/13-AIHP567. http://archive.numdam.org/articles/10.1214/13-AIHP567/

[1] A. Abdesselam and V. Rivasseau. Trees, forests and jungles: A botanical garden for cluster expansions. In Constructive Physics. V. Rivasseau (Ed). Lecture Notes in Physics 446. Springer, Berlin, 1995. | MR | Zbl

[2] J. Ambjorn, B. Durhuus and T. Jonsson. Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A 6 (1991) 1133-1146. | MR | Zbl

[3] G. W. Anderson, A. Guionnet and O. Zeitouni. An Introduction to Random Matrices. Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge, 2009. | MR | Zbl

[4] J. Ben Geloun and V. Rivasseau. A renormalizable 4-dimensional tensor field theory. Comm. Math. Phys. 318 69-109. Available at arXiv:1111.4997 [hep-th]. | MR | Zbl

[5] V. Bonzom, R. Gurau, A. Riello and V. Rivasseau. Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853 (2011) 174-195. Available at arXiv:1105.3122 [hep-th]. | MR | Zbl

[6] V. Bonzom, R. Gurau and V. Rivasseau. Random tensor models in the large N limit: Uncoloring the colored tensor models. Phys. Rev. D 85 (2012) 084037. Available at arXiv:1202.3637 [hep-th]. | MR

[7] B. Collins. Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability. Int. Math. Res. Not. 17 (2003) 953-982. Available at arXiv:math-ph/0205010. | MR | Zbl

[8] B. Collins and P. Sniady. Integration with respect to the Haar measure on unitary, orthogonal and symplectic group. Comm. Math. Phys. 264 (2006) 773-795. Available at arXiv:math-ph/0402073. | MR | Zbl

[9] A. Connes and D. Kreimer. Hopf algebras, renormalization and noncommutative geometry. Comm. Math. Phys. 199 (1998) 203-242. Available at arXiv:hep-th/9808042. | MR | Zbl

[10] A. Connes and D. Kreimer. Insertion and elimination: The doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3 (2002) 411-433. Available at arXiv:hep-th/0201157. | MR | Zbl

[11] F. J. Dyson. Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3 (1962) 140-156. | MR | Zbl

[12] F. J. Dyson. Correlations between eigenvalues of a random matrix. Comm. Math. Phys. 19 (1970) 235-250. | MR | Zbl

[13] L. Erdos. Universality of Wigner random matrices: A survey of recent results. Uspekhi Mat. Nauk 66 (2011) 67-198. Available at arXiv:1004.0861v2 [math-ph]. | MR | Zbl

[14] G. Gallavotti and F. Nicolo. Renormalization theory in four-dimensional scalar fields. I. Comm. Math. Phys. 100 (1985) 545-590. | MR

[15] J. Glimm and A. Jaffe. Quantum Physics. A Functional Integral Point of View, 2nd edition. Springer, New York, 1987. | MR | Zbl

[16] M. Gross. Tensor models and simplicial quantum gravity in > 2-D. Nucl. Phys. Proc. Suppl. 25A (1992) 144-149. | MR | Zbl

[17] H. Grosse and R. Wulkenhaar. Renormalization of φ 4 theory on noncommutative 4 in the matrix base. Comm. Math. Phys. 256 (2005) 305-374. Available at arXiv:hep-th/0401128. | MR | Zbl

[18] R. Gurau. Lost in translation: Topological singularities in group field theory. Class. Quant. Grav. 27 (2010) 235023. Available at arXiv:1006.0714 [hep-th]. | MR | Zbl

[19] R. Gurau. The 1/N expansion of colored tensor models. Ann. Henri Poincaré 12 (2011) 829-847. Available at arXiv:1011.2726 [gr-qc]. | MR | Zbl

[20] R. Gurau. The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincaré 13 (2011) 399-423. Available at arXiv:1102.5759 [gr-qc]. | MR | Zbl

[21] R. Gurau. Colored group field theory. Comm. Math. Phys. 304 (2011) 69-93. Available at arXiv:0907.2582 [hep-th]. | MR | Zbl

[22] R. Gurau. A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B 852 (2011) 592-614. Available at arXiv:1105.6072 [hep-th]. | MR | Zbl

[23] R. Gurau and V. Rivasseau. The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95 (2011) 50004. Available at arXiv:1101.4182 [gr-qc]. | MR | Zbl

[24] R. Gurau and J. P. Ryan. Colored tensor models - A review. SIGMA 8 (2012) 020. Available at arXiv:1109.4812 [hep-th]. | MR | Zbl

[25] S. K. Lando, A. K. Zvonkin, R. V. Gamkrelidze and V. A. Vassiliev. Graphs on Surfaces and Their Applications. Encyclopaedia of Mathematical Sciences 141. Springer, Berlin, 2004. | MR | Zbl

[26] J. Martinet and J.-P. Ramis. Elementary acceleration and multisummability I. Ann. Inst. H. Poincaré Phys. Théor. 54 (1991) 331-401. | Numdam | MR | Zbl

[27] M. L. Mehta. Random Matrices. Pure and Applied Mathematics (Amsterdam) 142. Elsevier/Academic Press, Amsterdam, 2004. | MR | Zbl

[28] A. Nica and R. Speicher. Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl

[29] L. Pastur and M. Shcherbina. Eigenvalue Distribution of Large Random Matrices. Mathematical Surveys and Monographs 171. Amer. Math. Soc., Providence, RI, 2011. | MR | Zbl

[30] V. Rivasseau. From Perturbative to Constructive Renormalization, 2nd edition. Princeton Univ. Press, Princeton, 1991. | MR

[31] V. Rivasseau. Constructive matrix theory. JHEP 0709 (2007) 008. Available at arXiv:0706.1224 [hep-th]. | MR

[32] V. Rivasseau and Z. Wang. Loop vertex expansion for φ 2k theory in zero dimension. J. Math. Phys. 51 (2010) 092304. Available at arXiv:1003.1037 [math-ph]. | MR

[33] A. D. Sokal. An improvement of Watson's theorem on Borel summability. J. Math. Phys. 21 (1980) 261-263. | MR | Zbl

[34] R. Speicher. Multiplicative functions on the lattice of non-crossing partitions and free convolution. Math. Ann. 298 (1994) 611-628. | MR | Zbl

[35] G. 't Hooft. A planar diagram theory for strong interactions. Nucl. Phys. B 72 (1974) 461-473.

[36] T. Tao and V. Vu. Random matrices: Universality of local eigenvalue statistics. Acta Math. 206 (1) (2011) 127-204. Available at arXiv:0906.0510v10. | MR | Zbl

[37] D. Voiculescu. Symmetries of some reduced free product C * -algebras. In Operator Algebras and Their Connections with Topology and Ergodic Theory (Buşteni, 1983) 556-588. Lecture Notes in Mathematics 1132. Springer, New York, 1983. | MR | Zbl

[38] D. Voiculescu. Limit laws for random matrices and free products. Invent. Math. 104 (1991) 201-220. | MR | Zbl

[39] D. Voiculescu, K. Dykema and A. Nica. Free Random Variables. CRM Monograph Series 1. Amer. Math. Soc., Providence, RI, 1992. | MR | Zbl

Cité par Sources :