Grâce à une approche spectrale, nous donnons des conditions assurant la validité du développement d’Edgeworth d’ordre 1 paramétrique, dans le cadre général des fonctionnelles bivariées et additives de chaînes de Markov fortement ergodiques. En particulier, soit une chaîne de Markov -géométriquement ergodique dont la loi dépend d’un paramètre . Nous montrons alors que satisfait un développement d’Edgeworth d’ordre 1 uniforme (en ) si satisfait une condition de type non-lattice ainsi qu’une condition quasi-optimale de moment-domination. De plus, ce résultat est établi dans le cas où les données ne sont pas nécessairement stationnaires. Ce résultat est appliqué en particulier aux -estimateurs associés à des chaînes de Markov -géométriquement ergodiques. Les -estimateurs de processus autorégressifs sont étudiés.
We give a spectral approach to prove a parametric first-order Edgeworth expansion for bivariate additive functionals of strongly ergodic Markov chains. In particular, given any -geometrically ergodic Markov chain whose distribution depends on a parameter , we prove that satisfies a uniform (in ) first-order Edgeworth expansion provided that satisfies some non-lattice condition and an almost optimal moment domination condition. Furthermore, the sequence need not be stationary. This result is applied to -estimators of Markov chains and in particular of -geometrically ergodic Markov chains. The -estimators of some autoregressive processes are studied.
Mots clés : edgeworth expansion, $V$-geometrically ergodic Markov chain, non-arithmeticity condition, perturbation operator
@article{AIHPB_2015__51_2_781_0, author = {Ferr\'e, D.}, title = {Parametric first-order {Edgeworth} expansion for {Markov} additive functionals. {Application} to $M$-estimations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {781--808}, publisher = {Gauthier-Villars}, volume = {51}, number = {2}, year = {2015}, doi = {10.1214/13-AIHP592}, mrnumber = {3335025}, zbl = {1322.60158}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/13-AIHP592/} }
TY - JOUR AU - Ferré, D. TI - Parametric first-order Edgeworth expansion for Markov additive functionals. Application to $M$-estimations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 781 EP - 808 VL - 51 IS - 2 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/13-AIHP592/ DO - 10.1214/13-AIHP592 LA - en ID - AIHPB_2015__51_2_781_0 ER -
%0 Journal Article %A Ferré, D. %T Parametric first-order Edgeworth expansion for Markov additive functionals. Application to $M$-estimations %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 781-808 %V 51 %N 2 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/13-AIHP592/ %R 10.1214/13-AIHP592 %G en %F AIHPB_2015__51_2_781_0
Ferré, D. Parametric first-order Edgeworth expansion for Markov additive functionals. Application to $M$-estimations. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 2, pp. 781-808. doi : 10.1214/13-AIHP592. http://archive.numdam.org/articles/10.1214/13-AIHP592/
[1] Positive Transfer Operators and Decay of Correlations. Adv. Ser. Nonlinear Dynam. 16. World Scientific Publishing Co., River Edge, NJ, 2000. | DOI | MR | Zbl
.[2] A renewal approach to markovian -statistics. Math. Methods Statist. 20 (2011) 79–105. | DOI | MR | Zbl
and .[3] Statistical Inference for Markov Processes. Univ. Chicago Press, Chicago, IL, 1961. | MR | Zbl
.[4] The Berry–Esseen theorem for strongly mixing Harris recurrent Markov chains. Probab. Theory Related Fields 60 (1982) 283–289. | MR | Zbl
.[5] Efficient parameter estimation for self similar processes. Ann. Statist. 17 (1989) 1749–1766. | DOI | MR | Zbl
.[6] On likelihood estimation for discretely observed Markov jump processes. Aust. N. Z. J. Stat. 49 (2007) 93–107. | DOI | MR | Zbl
and .[7] Approximations for densities of sufficient estimators. Biometrika 67 (1980) 311–333. | DOI | MR | Zbl
.[8] An Introduction to Probability Theory and Its Applications. Vol. II. Wiley, New York, 1971. | MR | Zbl
.[9] Développements d’Edgeworth en statistique des modèles markoviens. Ph.D. thesis, Institut National des Sciences Appliquées de Rennes.
.[10] Développement d’Edgeworth d’ordre 1 pour des -estimateurs dans le cas de chaînes -géométriquement ergodiques. C. R. Math. Acad. Sci. Paris 348 (2010) 331–334. | DOI | MR | Zbl
.[11] Regularity of the characteristic function of additive functionals for iterated function systems. Statistical applications. Markov Process. Related Fields 19 (2013) 299–342. | MR | Zbl
and .[12] Limit theorems for stationary Markov processes with -spectral gap. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 396–423. | DOI | EuDML | Numdam | MR | Zbl
, and .[13] Efficient likelihood estimation in state space models. Ann. Statist. 34 (2006) 2026–2068. | MR | Zbl
.[14] Note on minimum contrast estimators for Markov processes. Metrika 19 (1972) 115–130. | DOI | EuDML | MR | Zbl
.[15] Asymptotic distribution of statistics in time series. Ann. Statist. 22 (1994) 2062–2088. | DOI | MR | Zbl
and .[16] Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes Math. 1766. Springer, Berlin, 2001. | DOI | MR | Zbl
and .[17] A Berry-Esseen theorem on -estimators for -geometrically ergodic Markov chains. Bernoulli 18 (2012) 703–734. | DOI | MR | Zbl
, and .[18] The Nagaev–Guivarc’h method via the Keller–Liverani theorem. Bull. Soc. Math. France 138 (3) (2010) 415–489. | EuDML | Numdam | MR | Zbl
and .[19] Asymptotic expansions for strongly mixing Harris recurrent Markov chains. Scand. J. Statist. 16 (1989) 47–63. | MR | Zbl
.[20] Stability of the spectrum for transfer operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) XXVIII (1999) 141–152. | EuDML | Numdam | MR | Zbl
and .[21] Valid asymptotic expansions for the maximum likelihood estimator of the parameter of a stationary, Gaussian, strongly dependent process. Ann. Statist. 31 (2003) 586–612. | MR | Zbl
, and .[22] Invariant measures and their properties. A functional analytic point of view. In Dynamical Systems. Part II 185–237. Cent. Ric. Mat. Ennio Giorgi. Scuola Norm. Sup., Pisa, 2003. | MR | Zbl
.[23] Limit theorems for Harris Markov chains. I. Theory Probab. Appl. 31 (1987) 269–285. | DOI | MR | Zbl
.[24] Markov Chains and Stochastic Stability. Springer, Berlin, 1993. | MR | Zbl
and .[25] Asymptotic expansions related to minimum contrast estimators. Ann. Statist. 1 (6) (1973) 993–1026. | MR | Zbl
.[26] Maximum likelihood estimation for Markov processes. Ann. Inst. Statist. Math. 24 (1972) 333–345. | DOI | MR | Zbl
.[27] On the approximation of positive operators and the behaviour of the spectra of the approximants. Integral Equations Operator Theory 28 (1) (1997) 72–86. | MR | Zbl
and .[28] Asymptotic inferencer in Markov process. Ann. Math. Statist. 36 (1965) 978–982. | DOI | MR | Zbl
.[29] Regenerative stochastic processes. Proc. Roy. Soc. London. Ser. A. 232 (1955) 6–31. | DOI | MR | Zbl
.Cité par Sources :