Pour une classe de processus de -Fleming–Viot avec dynamique brownienne sous-jacente dont les -coalescents associés descendent de l’infini, nous obtenons une borne supérieure sur le module de continuité des processus ancestraux définis par la construction look-down de Donnelly et Kurtz. Comme applications, nous obtenons que le module de continuité du processus -Fleming–Viot est majoré à tout temps positif par la fonction . Nous montrons aussi que le support est simultanément compact pour tout temps positif, et, en cas de compacité au temps initial, l’image est uniformément compacte sur tout intervalle de temps fini. En plus, sous une condition faible sur les taux de -coalescence, nous obtenons une borne supérieure uniforme sur la dimension de Hausdorff du support et de l’image.
For a class of -Fleming–Viot processes with underlying Brownian motion whose associated -coalescents come down from infinity, we prove a one-sided modulus of continuity result for their ancestry processes recovered from the lookdown construction of Donnelly and Kurtz. As applications, we first show that such a -Fleming–Viot support process has one-sided modulus of continuity (with modulus function ) at any fixed time. We also show that the support is compact simultaneously at all positive times, and given the initial compactness, its range is uniformly compact over any finite time interval. In addition, under a mild condition on the -coalescence rates, we find a uniform upper bound on Hausdorff dimension of the support and an upper bound on Hausdorff dimension of the range.
@article{AIHPB_2015__51_3_1076_0, author = {Liu, Huili and Zhou, Xiaowen}, title = {Some support properties for a class of ${\varLambda }${-Fleming{\textendash}Viot} processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1076--1101}, publisher = {Gauthier-Villars}, volume = {51}, number = {3}, year = {2015}, doi = {10.1214/13-AIHP598}, mrnumber = {3365973}, zbl = {1334.60182}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/13-AIHP598/} }
TY - JOUR AU - Liu, Huili AU - Zhou, Xiaowen TI - Some support properties for a class of ${\varLambda }$-Fleming–Viot processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1076 EP - 1101 VL - 51 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/13-AIHP598/ DO - 10.1214/13-AIHP598 LA - en ID - AIHPB_2015__51_3_1076_0 ER -
%0 Journal Article %A Liu, Huili %A Zhou, Xiaowen %T Some support properties for a class of ${\varLambda }$-Fleming–Viot processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1076-1101 %V 51 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/13-AIHP598/ %R 10.1214/13-AIHP598 %G en %F AIHPB_2015__51_3_1076_0
Liu, Huili; Zhou, Xiaowen. Some support properties for a class of ${\varLambda }$-Fleming–Viot processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 1076-1101. doi : 10.1214/13-AIHP598. http://archive.numdam.org/articles/10.1214/13-AIHP598/
[1] Exchangeability and related topics. In École d’Été de Probabilités de Saint-Flour XIII – 1983. Lecture Notes in Mathematics 1117 1–198. Springer, Berlin, 1985. | MR | Zbl
.[2] The -coalescent speed of coming down from infinity. Ann. Appl. Probab. 38(1) (2010) 207-233. | MR | Zbl
, and .[3] Stochastic flows associated to coalescent processes. III. Limit theorems. Illinois J. Math. 50 (2006) 147–181. | MR | Zbl
and .[4] Measure-valued diffusions, general coalescents and population genetic inference. In Trends in Stochastic Analysis. London Math. Soc. Lecture Note Ser. 353 329–363. Cambridge Univ. Press, Cambridge, 2009. | MR | Zbl
and .[5] -stable branching and -coalescents. Electron. J. Probab. 10 (9) (2005) 303–325. | EuDML | MR | Zbl
, , , , , and .[6] A modified lookdown construction for the Xi-Fleming–Viot process with mutation and populations with recurrent bottlenecks. ALEA Lat. Am. J. Probab. Math. Stat. 6 (2009) 25–61. | MR | Zbl
, , , and .[7] Measure-valued processes, self-similarity and flickering random measures. In Fractal Geometry and Stochastics IV. Progr. Probab. 61 175–196. Birkhäuser, Basel, 2009. | MR | Zbl
.[8] Infinitely divisible random measures and superprocesses, stochastic analysis and related topics. In Stochastic Analysis and Related Topics (Silivri, 1990). Progr. Probab. 31 1–129. Birkhäuser, Boston, MA, 1992. | MR | Zbl
.[9] Measure-valued Markov processes. École d’Été de Probabilités de Saint-Flour XIII – 1991. Lecture Notes in Mathematics 1541 1–260. Springer, Berlin, 1993. | MR | Zbl
.[10] Wandering random measures in the Fleming–Viot model. Ann. Appl. Probab. 10 (3) (1982) 554–580. | MR | Zbl
and .[11] High-density limits of hierarchically structured branching-diffusing populations. Stochastic Process. Appl. 62 (1996) 191–222. | DOI | MR | Zbl
, and .[12] Super-Brownian motion: Path properties and hitting probabilities. Probab. Theory Related Fields 83 (1989) 135–205. | DOI | MR | Zbl
, and .[13] Almost-sure path properties of -superprocesses. Stochastic Process. Appl. 51 (1994) 221–258. | DOI | MR | Zbl
and .[14] Path properties of superprocesses with a general branching mechanism. Ann. Appl. Probab. 27 (3) (1999) 1099–1134. | MR | Zbl
.[15] A countable representation of the Fleming–Viot measure-valued diffusion. Ann. Appl. Probab. 24 (2) (1996) 698–742. | MR | Zbl
and .[16] Genealogical processes for Fleming–Viot models with selection and recombination. Ann. Appl. Probab. 9 (4) (1999) 1091–1148. | MR | Zbl
and .[17] Particle representations for measure-valued population models. Ann. Appl. Probab. 27 (1) (1999) 166–205. | MR | Zbl
and .[18] Fleming–Viot processes in population genetics. SIAM J. Control Optim. 31 (2) (1993) 345–386. | MR | Zbl
and .[19] Some Mathematical Models from Population Genetics. Lecture Notes in Mathematics 2012. Springer, Heidelberg, 2011. | MR | Zbl
.[20] The Geometry of Fractal Sets. Cambridge Univ. Press, Cambridge, 1985. | DOI | MR | Zbl
.[21] Compact support property of the -Fleming–Viot process with underlying Brownian motion. Electron. J. Probab. 17 (73) (2012) 1–20. | MR | Zbl
and .[22] Dawson–Watanabe superprocesses and measure-valued diffusions. In Lecture Notes in Mathematics 1781 132–318. Springer, Berlin, 1999. | MR | Zbl
.[23] Coalescents with multiple collisions. Ann. Appl. Probab. 27 (4) (1999) 1870–1902. | MR | Zbl
.[24] A new result on the support of the Fleming–Viot process, proved by nonstandard construction. Stochastics Stochastics Rep. 44 (3-4) (1993) 213–223. | MR | Zbl
.[25] Properties of superprocesses and interacting particle systems. Diploma thesis, Technische Univ. Berlin, 2009.
.[26] The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (4) (1999) 1116–1125. | MR | Zbl
.[27] A necessary and sufficient condition for the -coalescent to come down from infinity. Electron. Commun. Probab. 5 (2000) 1–11. | DOI | EuDML | MR | Zbl
.[28] Path properties of superprocesses. Ph.D. thesis, Univ. British Columbia, 1989. | MR | Zbl
.Cité par Sources :