On considère une chaîne de Markov en temps continu à espace d’états denombrable, et on prouve un principe de grandes déviations commun pour la mesure empirique et le courant empirique, qui représente le nombre total de sauts entre les paires d’états. On donne une preuve directe à l’aide d’un tilting, et une preuve indirecte par contraction, à partir du processus empirique.
We consider a continuous time Markov chain on a countable state space and prove a joint large deviation principle for the empirical measure and the empirical flow, which accounts for the total number of jumps between pairs of states. We give a direct proof using tilting and an indirect one by contraction from the empirical process.
@article{AIHPB_2015__51_3_867_0, author = {Bertini, Lorenzo and Faggionato, Alessandra and Gabrielli, Davide}, title = {Large deviations of the empirical flow for continuous time {Markov} chains}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {867--900}, publisher = {Gauthier-Villars}, volume = {51}, number = {3}, year = {2015}, doi = {10.1214/14-AIHP601}, mrnumber = {3365965}, zbl = {1323.60045}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/14-AIHP601/} }
TY - JOUR AU - Bertini, Lorenzo AU - Faggionato, Alessandra AU - Gabrielli, Davide TI - Large deviations of the empirical flow for continuous time Markov chains JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 867 EP - 900 VL - 51 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/14-AIHP601/ DO - 10.1214/14-AIHP601 LA - en ID - AIHPB_2015__51_3_867_0 ER -
%0 Journal Article %A Bertini, Lorenzo %A Faggionato, Alessandra %A Gabrielli, Davide %T Large deviations of the empirical flow for continuous time Markov chains %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 867-900 %V 51 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/14-AIHP601/ %R 10.1214/14-AIHP601 %G en %F AIHPB_2015__51_3_867_0
Bertini, Lorenzo; Faggionato, Alessandra; Gabrielli, Davide. Large deviations of the empirical flow for continuous time Markov chains. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 867-900. doi : 10.1214/14-AIHP601. http://archive.numdam.org/articles/10.1214/14-AIHP601/
[1] Computation of current cumulants for small nonequilibrium systems. J. Stat. Phys. 135 (1) (2009) 57–75. | MR | Zbl
, and .[2] A representation formula for the large deviation rate function for the empirical law of a continuous time Markov chain. Statist. Probab. Lett. 41 (2) (1999) 107–115. | MR | Zbl
and .[3] Donsker–Varadhan asymptotics for degenerate jump Markov processes. Preprint, 2013. Available at arXiv:1310.5829. | MR | Zbl
and .[4] Non equilibrium current fluctuations in stochastic lattice gases. J. Stat. Phys. 123 (2006) 237–276. | DOI | MR | Zbl
, , , and .[5] Large deviations of the empirical current in interacting particle systems. Theory Probab. Appl. 51 (2007) 2–27. | DOI | MR | Zbl
, , , and .[6] From level 2.5 to level 2 large deviations for continuous time Markov chains. Markov Process. Related Fields 20 (2014) 545–562. | MR | Zbl
, and .[7] Flows, currents and symmetries for continuous time Markov chains: A large deviation approach. Preprint.
, and .[8] Current fluctuations in non-equilibrium diffusive systems: An additivity principle. Phys. Rev. Lett. 92 (2004) 180601.
and .[9] Current large deviations for asymmetric exclusion processes with open boundaries. J. Stat. Phys. 123 (2) (2006) 277–300. | MR | Zbl
and .[10] Vortices in the two-dimensional simple exclusion process. J. Stat. Phys. 131 (2008) 821–841. | DOI | MR | Zbl
, and .[11] Finite size scaling of the dynamical free-energy in a kinetically constrained model. J. Stat. Phys. 147 (2012) 1–17. | DOI | MR | Zbl
, and .[12] Activity phase transition for constrained dynamics. Comm. Math. Phys. 311 (2012) 357–396. | DOI | MR | Zbl
and .[13] From Markov Chains to Nonequilibrium Particle Systems. World Scientific, Singapore, 1992. | MR | Zbl
.[14] Eigenvalues, Inequalities and Ergodic Theory. Springer, Berlin, 2005. | MR | Zbl
.[15] The large-deviation principle for Markov chains with continuous time (Russian). Problemy Peredachi Informatsii 37 (2) (2001) 40–61. Translation in Probl. Inf. Transm. 37 (2) (2001) 120–139. | MR | Zbl
.[16] Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | DOI | MR | Zbl
and .[17] Large Deviations. Fields Institute Monographs. Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
.[18] Large Deviations. Academic Press, Boston, MA, 1989. | MR | Zbl
and .[19] Asymptotic evaluation of certain Markov process expectations for large time. Comm. Pure Appl. Math. (I) 28 (1975) 1–47. (II) 28 (1975) 279–301. (III) 29 (1976) 389–461. (IV) 36 (1983) 183–212. | MR | Zbl
and .[20] Topology. Allyn and Bacon, Boston, 1966. | MR | Zbl
.[21] Exponential approximations in completely regular topological spaces and extensions of Sanov’s theorem. Stochastic Process. Appl. 77 (1998) 233–251. | DOI | MR | Zbl
and .[22] Markov Processes. Characterization and Convergence. Wiley, New York, 1986. | MR | Zbl
and .[23] Gallavotti–Cohen–Type symmetry related to cycle decompositions for Markov chains and biochemical applications. J. Stat. Phys. 143 (2011) 11–32. | DOI | MR | Zbl
and .[24] Which random walks are cyclic? ALEA, Lat. Am. J Probab. Math. Stat. 9 (2012) 231–267. | MR | Zbl
and .[25] Current fluctuations in the zero-range process with open boundaries. J. Stat. Mech. Theory Exp. (2005) P08003.
, and .[26] Large deviations of the asymmetric simple exclusion process in one dimension. Ph.D. thesis, Courant Institute NYU, 2000. | MR
.[27] Relative entropy between Markov transition rate matrices. IEEE Trans. Inform. Theory 39 (3) (1993) 1056–1057. | MR | Zbl
and .[28] Scaling Limits of Interacting Particle Systems. Springer, Berlin, 1999. | DOI | MR | Zbl
and .[29] Large deviation for stochastic line integrals as -currents. Probab. Theory Related Fields 147 (2010) 649–674. | DOI | MR | Zbl
, and .[30] On large deviations for random currents induced from stochastic line integrals. Forum Math. 18 (2006) 639–676. | DOI | MR | Zbl
.[31] Fluctuation Relations for Molecular Motors. B. Duplantier and V. Rivasseau (Eds). Biological Physics. Poincaré Seminar 2009, Progress in Mathematical Physics 60. Birkhäuser, Basel, 2011.
and .[32] A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95 (1999) 333–365. | DOI | MR | Zbl
and .[33] Circuit processes. Ann. Probab. 9 (1981) 604–610. | DOI | MR | Zbl
.[34] A -convergence approach to large deviations. Preprint, 2012. Available at arXiv:1204.0640. | MR
.[35] Large deviations for the empirical measure of Markov renewal processes. Preprint, 2012. Available at arXiv:1203.5930.
, and .[36] An Introduction to Banach Space Theory. Springer, New York, 1998. | DOI | MR | Zbl
.[37] Decomposition of solenoidal vector charges into elementary solenoids and the structure of normal one-dimensional currents. St. Petersburg Math. J. 5 (4) (1994) 841–867. | MR | Zbl
.[38] Large Scale Dynamics of Interacting Particles. Springer, Berlin, 1991. | DOI | Zbl
.[39] Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge, 1999. | MR | Zbl
.[40] Large Deviations and Applications. CBMS-NSF Regional Conference Series in Applied Mathematics 46. SIAM, Philadelphia, PA, 1984. | DOI | MR | Zbl
.Cité par Sources :