On considère la percolation de Bernoulli par arêtes dans le régime surcritique. Soit le plus grand amas de percolation dans avec . Nous obtenons une estimation précise de la résistance effective sur . Comme application, nous montrons que le temps de recouvrement d’une marche simple sur est de l’ordre de . En remarquant que le temps de recouvrement d’une marche simple sur est de l’ordre de quand (et de quand ), ceci montre une différence quantitative entre les deux marches si .
Let be the largest open cluster for supercritical Bernoulli bond percolation in with . We obtain a sharp estimate for the effective resistance on . As an application we show that the cover time for the simple random walk on is comparable to . Noting that the cover time for the simple random walk on is of order for (and of order for ), this gives a quantitative difference between the two random walks for .
@article{AIHPB_2015__51_3_935_0, author = {Abe, Yoshihiro}, title = {Effective resistances for supercritical percolation clusters in boxes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {935--946}, publisher = {Gauthier-Villars}, volume = {51}, number = {3}, year = {2015}, doi = {10.1214/14-AIHP604}, mrnumber = {3365968}, zbl = {1323.60122}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/14-AIHP604/} }
TY - JOUR AU - Abe, Yoshihiro TI - Effective resistances for supercritical percolation clusters in boxes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 935 EP - 946 VL - 51 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/14-AIHP604/ DO - 10.1214/14-AIHP604 LA - en ID - AIHPB_2015__51_3_935_0 ER -
%0 Journal Article %A Abe, Yoshihiro %T Effective resistances for supercritical percolation clusters in boxes %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 935-946 %V 51 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/14-AIHP604/ %R 10.1214/14-AIHP604 %G en %F AIHPB_2015__51_3_935_0
Abe, Yoshihiro. Effective resistances for supercritical percolation clusters in boxes. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 935-946. doi : 10.1214/14-AIHP604. http://archive.numdam.org/articles/10.1214/14-AIHP604/
[1] Cover times for sequences of reversible Markov chains on random graphs. Kyoto J. Math. 54 (2014) 555–576. | MR | Zbl
.[2] Transience of percolation clusters on wedges. Electron. J. Probab. 11 (2006) 655–669. | EuDML | MR | Zbl
, , and .[3] On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996) 1036–1048. | DOI | MR | Zbl
and .[4] Random walks on supercritical percolation clusters. Ann. Probab. 32 (2004) 3024–3084. | DOI | MR | Zbl
.[5] Collisions of random walks. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 922–946. | DOI | EuDML | Numdam | MR | Zbl
, and .[6] Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Related Fields 137 (2007) 83–120. | DOI | MR | Zbl
and .[7] A resistance bound via an isoperimetric inequality. Combinatorica 25 (2005) 645–650. Available at arXiv:math/0212322v2. | DOI | MR | Zbl
and .[8] On the mixing time of a simple random walk on the super critical percolation cluster. Probab. Theory Related Fields 125 (2003) 408–420. | DOI | MR | Zbl
and .[9] Unpredictable paths and percolation. Ann. Probab. 26 (1998) 1198–1211. | DOI | MR | Zbl
, and .[10] Existence of the harmonic measure for random walks on graphs and in random environments. J. Stat. Phys. 150 (2013) 235–263. Available at arXiv:1111.5326v2. | DOI | MR | Zbl
and .[11] Bulk transport properties and exponent inequalities for random resistor and flow networks. Comm. Math. Phys. 105 (1986) 133–152. | DOI | MR | Zbl
and .[12] Two random walks on the open cluster of meet infinitely often. Sci. China Math. 53 (2010) 1971-1978. | DOI | MR | Zbl
and .[13] Quenched invariance principles for random walks and elliptic diffusions in random media with boundary. Available at arXiv:1306.0076v1. | MR | Zbl
, and .[14] Surface order large deviations for 2D FK-percolation and Potts models. Stochastic Process. Appl. 113 (2004) 81–99. | DOI | MR | Zbl
and .[15] The electrical resistance of a graph captures its commute and cover times. Comput. Complexity 6 (1996/1997) 312–340. | MR | Zbl
, , , and .[16] Cover times, blanket times, and majorizing measures. Ann. of Math. (2) 175 (2012) 1409–1471. | MR | Zbl
, and .[17] Random Walks and Electric Networks. Carus Math. Monogr. 22. Math. Assoc. Amer., Washington, DC, 1984. | MR | Zbl
and .[18] First-passage percolation, network flows and electrical resistances. Z. Wahrsch. Verw. Gebiete 66 (1984) 335–366. | DOI | MR | Zbl
and .[19] Random walk on the infinite cluster of the percolation model. Probab. Theory Related Fields 96 (1993) 33–44. | DOI | MR | Zbl
, and .[20] Nearest-neighbor walks with low predictability profile and percolation in dimensions. Ann. Probab. 26 (1998) 1212–1231. | DOI | MR | Zbl
and .[21] Energy of flows on percolation clusters. Random Structures Algorithms 16 (2000) 143–155. | DOI | MR | Zbl
.[22] Energy of flows on percolation clusters. Potential Anal. 14 (2001) 375–385. | DOI | MR | Zbl
and .[23] Percolation Theory for Mathematicians. Progress in Probability and Statistics. Birkhäuser, Boston, MA, 1982. | DOI | MR | Zbl
.[24] Personal communication.
.[25] Random Walks on Disordered Media and Their Scaling Limits. École d’Été de Probabilités de Saint-Flour XL-2010. Lecture Notes in Mathematics 2101. Springer, Cham, 2014. | MR | Zbl
.[26] Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI, 2009. With a chapter by James G. Propp and David B. Wilson. | MR | Zbl
, and .[27] Domination by product measures. Ann. Probab. 25 (1997) 71–95. | DOI | MR | Zbl
, and .[28] Energy and cutsets in infinite percolation clusters. In Proceedings of the Cortona Workshop on Random Walks and Discrete Potential Theory 264–278. M. Picardello and W. Woess (Eds). Cambridge Univ. Press, Cambridge, 1999. | MR | Zbl
and .[29] Probability on Trees and Networks. Book in preparation. Current version available at http://mypage.iu.edu/~rdlyons/. | DOI | Zbl
and .[30] Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007) 2287–2307. | MR | Zbl
and .[31] Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32 (2004) 100–128. | DOI | MR | Zbl
and .[32] Covering problems for Brownian motion on spheres. Ann. Probab. 16 (1988) 189–199. | DOI | MR | Zbl
.[33] A note on percolation on : Isoperimetric profile via exponential cluster repulsion. Electron. Commun. Probab. 13 (2008) 377–392. | DOI | MR | Zbl
.[34] Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Related Fields 104 (1996) 427–466. | MR | Zbl
.[35] Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Related Fields 129 (2004) 219–244. | DOI | MR | Zbl
and .Cité par Sources :