Tracy–Widom asymptotics for q-TASEP
Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1465-1485.

On considère le modèle du q-TASEP, qui est une modification du processus d’exclusion totalement asymétrique (TASEP) sur . Le taux des sauts d’une particule dépend de la distance avec la particule à sa droite et d’un paramètre q[0,1). Dans cet article on considère la condition initiale où - est completement occupé par les particules. On montre que les fluctuations du courant au temps τ sont d’ordre τ1/3 et la distribution asymptotique est la distribution de Tracy–Widom GUE. Ce résultat confirme la conjecture KPZ.

We consider the q-TASEP that is a q-deformation of the totally asymmetric simple exclusion process (TASEP) on for q[0,1) where the jump rates depend on the gap to the next particle. For step initial condition, we prove that the current fluctuation of q-TASEP at time τ is of order τ1/3 and asymptotically distributed as the GUE Tracy–Widom distribution, which confirms the KPZ scaling theory conjecture.

DOI : 10.1214/14-AIHP614
Mots-clés : interacting particle systems, kpz universality class, q-TASEP, current fluctuation, Tracy–Widom distribution
@article{AIHPB_2015__51_4_1465_0,
     author = {Ferrari, Patrik L. and Vet\H{o}, B\'alint},
     title = {Tracy{\textendash}Widom asymptotics for $q${-TASEP}},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1465--1485},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {4},
     year = {2015},
     doi = {10.1214/14-AIHP614},
     mrnumber = {3414454},
     zbl = {1376.60080},
     language = {en},
     url = {https://www.numdam.org/articles/10.1214/14-AIHP614/}
}
TY  - JOUR
AU  - Ferrari, Patrik L.
AU  - Vető, Bálint
TI  - Tracy–Widom asymptotics for $q$-TASEP
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2015
SP  - 1465
EP  - 1485
VL  - 51
IS  - 4
PB  - Gauthier-Villars
UR  - https://www.numdam.org/articles/10.1214/14-AIHP614/
DO  - 10.1214/14-AIHP614
LA  - en
ID  - AIHPB_2015__51_4_1465_0
ER  - 
%0 Journal Article
%A Ferrari, Patrik L.
%A Vető, Bálint
%T Tracy–Widom asymptotics for $q$-TASEP
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2015
%P 1465-1485
%V 51
%N 4
%I Gauthier-Villars
%U https://www.numdam.org/articles/10.1214/14-AIHP614/
%R 10.1214/14-AIHP614
%G en
%F AIHPB_2015__51_4_1465_0
Ferrari, Patrik L.; Vető, Bálint. Tracy–Widom asymptotics for $q$-TASEP. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1465-1485. doi : 10.1214/14-AIHP614. https://www.numdam.org/articles/10.1214/14-AIHP614/

[1] G. Barraquand. A phase transition for q-TASEP with a few slower particles. Stochastic Process. Appl. 125 (2015) 2674–2699. | DOI | MR | Zbl

[2] A. Borodin and I. Corwin. Discrete time q-TASEPs. Int. Math. Res. Not. IMRN 2015 (2015) 499–537. | DOI | MR | Zbl

[3] A. Borodin and I. Corwin. Macdonald processes. Probab. Theory Related Fields 158 (2014) 225–400. | DOI | MR | Zbl

[4] A. Borodin, I. Corwin and P. L. Ferrari. Free energy fluctuations for directed polymers in random media in 1+1 dimension. Comm. Pure Appl. Math. 67 (2014) 1129–1214. | DOI | MR | Zbl

[5] A. Borodin, I. Corwin, L. Petrov and T. Sasamoto. Spectral theory for the q-Boson particle system. Compos. Math. 151 (2015) 1–67. | DOI | MR | Zbl

[6] A. Borodin, I. Corwin and T. Sasamoto. From duality to determinants for q-TASEP and ASEP. Ann. Probab. 42 (2014) 2314–2382. | DOI | MR | Zbl

[7] A. Borodin and P. L. Ferrari. Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13 (2008) 1380–1418. | DOI | MR | Zbl

[8] A. Borodin, P. L. Ferrari, M. Prähofer and T. Sasamoto. Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007) 1055–1080. | DOI | MR | Zbl

[9] I. Corwin, P. L. Ferrari and S. Péché. Universality of slow decorrelation in KPZ models. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 134–150. | DOI | Numdam | MR | Zbl

[10] I. Corwin and L. Petrov. The q-PushASEP: A new integrable model for traffic in 1+1 dimension. J. Stat. Phys. 160 (2015) 1005–1026. | DOI | MR | Zbl

[11] P. L. Ferrari. From interacting particle systems to random matrices. J. Stat. Mech. 2010 (2010) P10016. | MR | Zbl

[12] T. Imamura and T. Sasamoto. Dynamical properties of a tagged particle in the totally asymmetric simple exclusion process with the step-type initial condition. J. Stat. Phys. 128 (2007) 799–846. | DOI | MR | Zbl

[13] K. Johansson. Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 (2003) 277–329. | DOI | MR | Zbl

[14] M. Korhonen and E. Lee. The transition probability and the probability for the left-most particle’s position of the q-TAZRP. J. Math. Phys. 55 (2014) 013301. | MR | Zbl

[15] N. O’Connell. Directed polymers and the quantum Toda lattice. Ann. Probab. 40 (2012) 437–458. | DOI | MR | Zbl

[16] T. Sasamoto. Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38 (2005) L549–L556. | MR

[17] T. Sasamoto and M. Wadati. Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31 (1998) 6057–6071. | DOI | MR | Zbl

[18] H. Spohn. KPZ scaling theory and the semi-discrete directed polymer model. MSRI Proceedings, 2012. Available at arXiv:1201.0645. | MR

[19] C. A. Tracy and H. Widom. Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1994) 151–174. | DOI | MR | Zbl

  • Dimitrov, Evgeni; Murthy, Anushka One-point asymptotics for half-flat ASEP, The Annals of Applied Probability, Volume 34 (2024) no. 1B | DOI:10.1214/23-aap1987
  • Dimitrov, Evgeni Two-Point Convergence of the Stochastic Six-Vertex Model to the Airy Process, Communications in Mathematical Physics, Volume 398 (2023) no. 3, p. 925 | DOI:10.1007/s00220-022-04499-3
  • Peski, Roger Van q-TASEP with position-dependent slowing, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ejp876
  • Korotkikh, Sergei Hidden diagonal integrability of q-Hahn vertex model and Beta polymer model, Probability Theory and Related Fields, Volume 184 (2022) no. 1-2, p. 493 | DOI:10.1007/s00440-022-01117-0
  • Betea, D.; Ferrari, P.L.; Occelli, A. The half-space Airy stat process, Stochastic Processes and their Applications, Volume 146 (2022), p. 207 | DOI:10.1016/j.spa.2022.01.002
  • Vető, Bálint Asymptotic fluctuations of geometric q-TASEP, geometric q-PushTASEP and q-PushASEP, Stochastic Processes and their Applications, Volume 148 (2022), p. 227 | DOI:10.1016/j.spa.2022.02.007
  • Corwin, Ivan; Matveev, Konstantin; Petrov, Leonid The q-Hahn PushTASEP, International Mathematics Research Notices, Volume 2021 (2021) no. 3, p. 2210 | DOI:10.1093/imrn/rnz106
  • Koshida, Shinji Free field approach to the Macdonald process, Journal of Algebraic Combinatorics, Volume 54 (2021) no. 1, p. 223 | DOI:10.1007/s10801-020-00976-x
  • Koshida, Shinji Free field theory and observables of periodic Macdonald processes, Journal of Combinatorial Theory, Series A, Volume 182 (2021), p. 105473 | DOI:10.1016/j.jcta.2021.105473
  • Liechty, Karl; Wang, Dong Asymptotics of free fermions in a quadratic well at finite temperature and the Moshe–Neuberger–Shapiro random matrix model, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 56 (2020) no. 2 | DOI:10.1214/19-aihp994
  • Betea, Dan; Ferrari, Patrik L.; Occelli, Alessandra Stationary Half-Space Last Passage Percolation, Communications in Mathematical Physics, Volume 377 (2020) no. 1, p. 421 | DOI:10.1007/s00220-020-03712-5
  • BARRAQUAND, GUILLAUME; BORODIN, ALEXEI; CORWIN, IVAN HALF-SPACE MACDONALD PROCESSES, Forum of Mathematics, Pi, Volume 8 (2020) | DOI:10.1017/fmp.2020.3
  • Dimitrov, Evgeni Six-vertex Models and the GUE-corners Process, International Mathematics Research Notices, Volume 2020 (2020) no. 6, p. 1794 | DOI:10.1093/imrn/rny072
  • Trofimova, A A; Povolotsky, A M Current statistics in the q-boson zero range process, Journal of Physics A: Mathematical and Theoretical, Volume 53 (2020) no. 36, p. 365203 | DOI:10.1088/1751-8121/aba026
  • Imamura, Takashi; Mucciconi, Matteo; Sasamoto, Tomohiro Stationary stochastic Higher Spin Six Vertex Model and q-Whittaker measure, Probability Theory and Related Fields, Volume 177 (2020) no. 3-4, p. 923 | DOI:10.1007/s00440-020-00966-x
  • Balázs, Márton; Duffy, Lewis; Pantelli, Dimitri q-Zero Range has Random Walking Shocks, Journal of Statistical Physics, Volume 174 (2019) no. 5, p. 958 | DOI:10.1007/s10955-018-02218-8
  • Imamura, Takashi; Sasamoto, Tomohiro Fluctuations for stationary q-TASEP, Probability Theory and Related Fields, Volume 174 (2019) no. 1-2, p. 647 | DOI:10.1007/s00440-018-0868-3
  • Barraquand, Guillaume; Rychnovsky, Mark Tracy-Widom Asymptotics for a River Delta Model, Stochastic Dynamics Out of Equilibrium, Volume 282 (2019), p. 483 | DOI:10.1007/978-3-030-15096-9_17
  • Lee, Eunghyun; Wang, Dong Distributions of a particle’s position and their asymptotics in the q-deformed totally asymmetric zero range process with site dependent jumping rates, Stochastic Processes and their Applications, Volume 129 (2019) no. 5, p. 1795 | DOI:10.1016/j.spa.2018.06.005
  • Dimitrov, Evgeni KPZ and Airy limits of Hall–Littlewood random plane partitions, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 54 (2018) no. 2 | DOI:10.1214/16-aihp817
  • Corwin, Ivan; Dimitrov, Evgeni Transversal Fluctuations of the ASEP, Stochastic Six Vertex Model, and Hall-Littlewood Gibbsian Line Ensembles, Communications in Mathematical Physics, Volume 363 (2018) no. 2, p. 435 | DOI:10.1007/s00220-018-3139-3
  • Borodin, Alexei; Petrov, Leonid Inhomogeneous exponential jump model, Probability Theory and Related Fields, Volume 172 (2018) no. 1-2, p. 323 | DOI:10.1007/s00440-017-0810-0
  • Chhita, S.; Ferrari, P. L.; Spohn, H. Limit distributions for KPZ growth models with spatially homogeneous random initial conditions, The Annals of Applied Probability, Volume 28 (2018) no. 3 | DOI:10.1214/17-aap1338
  • Orr, Daniel; Petrov, Leonid Stochastic higher spin six vertex model and q-TASEPs, Advances in Mathematics, Volume 317 (2017), p. 473 | DOI:10.1016/j.aim.2017.07.003
  • Ortmann, Janosch; Quastel, Jeremy; Remenik, Daniel A Pfaffian Representation for Flat ASEP, Communications on Pure and Applied Mathematics, Volume 70 (2017) no. 1, p. 3 | DOI:10.1002/cpa.21644
  • Barraquand, Guillaume; Corwin, Ivan Random-walk in Beta-distributed random environment, Probability Theory and Related Fields, Volume 167 (2017) no. 3-4, p. 1057 | DOI:10.1007/s00440-016-0699-z
  • Borodin, Alexei; Corwin, Ivan; Gorin, Vadim Stochastic six-vertex model, Duke Mathematical Journal, Volume 165 (2016) no. 3 | DOI:10.1215/00127094-3166843
  • Imamura, Takashi; Sasamoto, Tomohiro Determinantal Structures in the O’Connell-Yor Directed Random Polymer Model, Journal of Statistical Physics, Volume 163 (2016) no. 4, p. 675 | DOI:10.1007/s10955-016-1492-1
  • Barraquand, Guillaume; Corwin, Ivan The q-Hahn asymmetric exclusion process, The Annals of Applied Probability, Volume 26 (2016) no. 4 | DOI:10.1214/15-aap1148

Cité par 29 documents. Sources : Crossref