On considère le modèle du
We consider the
@article{AIHPB_2015__51_4_1465_0, author = {Ferrari, Patrik L. and Vet\H{o}, B\'alint}, title = {Tracy{\textendash}Widom asymptotics for $q${-TASEP}}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1465--1485}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/14-AIHP614}, mrnumber = {3414454}, zbl = {1376.60080}, language = {en}, url = {https://www.numdam.org/articles/10.1214/14-AIHP614/} }
TY - JOUR AU - Ferrari, Patrik L. AU - Vető, Bálint TI - Tracy–Widom asymptotics for $q$-TASEP JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1465 EP - 1485 VL - 51 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/14-AIHP614/ DO - 10.1214/14-AIHP614 LA - en ID - AIHPB_2015__51_4_1465_0 ER -
%0 Journal Article %A Ferrari, Patrik L. %A Vető, Bálint %T Tracy–Widom asymptotics for $q$-TASEP %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1465-1485 %V 51 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/14-AIHP614/ %R 10.1214/14-AIHP614 %G en %F AIHPB_2015__51_4_1465_0
Ferrari, Patrik L.; Vető, Bálint. Tracy–Widom asymptotics for $q$-TASEP. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1465-1485. doi : 10.1214/14-AIHP614. https://www.numdam.org/articles/10.1214/14-AIHP614/
[1] A phase transition for
[2] Discrete time
[3] Macdonald processes. Probab. Theory Related Fields 158 (2014) 225–400. | DOI | MR | Zbl
and .
[4] Free energy fluctuations for directed polymers in random media in
[5] Spectral theory for the
[6] From duality to determinants for
[7] Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13 (2008) 1380–1418. | DOI | MR | Zbl
and .[8] Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007) 1055–1080. | DOI | MR | Zbl
, , and .[9] Universality of slow decorrelation in KPZ models. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 134–150. | DOI | Numdam | MR | Zbl
, and .
[10] The
[11] From interacting particle systems to random matrices. J. Stat. Mech. 2010 (2010) P10016. | MR | Zbl
.[12] Dynamical properties of a tagged particle in the totally asymmetric simple exclusion process with the step-type initial condition. J. Stat. Phys. 128 (2007) 799–846. | DOI | MR | Zbl
and .[13] Discrete polynuclear growth and determinantal processes. Comm. Math. Phys. 242 (2003) 277–329. | DOI | MR | Zbl
.
[14] The transition probability and the probability for the left-most particle’s position of the
[15] Directed polymers and the quantum Toda lattice. Ann. Probab. 40 (2012) 437–458. | DOI | MR | Zbl
.[16] Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38 (2005) L549–L556. | MR
.[17] Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31 (1998) 6057–6071. | DOI | MR | Zbl
and .[18] KPZ scaling theory and the semi-discrete directed polymer model. MSRI Proceedings, 2012. Available at arXiv:1201.0645. | MR
.[19] Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159 (1994) 151–174. | DOI | MR | Zbl
and .- One-point asymptotics for half-flat ASEP, The Annals of Applied Probability, Volume 34 (2024) no. 1B | DOI:10.1214/23-aap1987
- Two-Point Convergence of the Stochastic Six-Vertex Model to the Airy Process, Communications in Mathematical Physics, Volume 398 (2023) no. 3, p. 925 | DOI:10.1007/s00220-022-04499-3
- q-TASEP with position-dependent slowing, Electronic Journal of Probability, Volume 27 (2022) no. none | DOI:10.1214/22-ejp876
- Hidden diagonal integrability of q-Hahn vertex model and Beta polymer model, Probability Theory and Related Fields, Volume 184 (2022) no. 1-2, p. 493 | DOI:10.1007/s00440-022-01117-0
- The half-space Airy stat process, Stochastic Processes and their Applications, Volume 146 (2022), p. 207 | DOI:10.1016/j.spa.2022.01.002
- Asymptotic fluctuations of geometric q-TASEP, geometric q-PushTASEP and q-PushASEP, Stochastic Processes and their Applications, Volume 148 (2022), p. 227 | DOI:10.1016/j.spa.2022.02.007
- The q-Hahn PushTASEP, International Mathematics Research Notices, Volume 2021 (2021) no. 3, p. 2210 | DOI:10.1093/imrn/rnz106
- Free field approach to the Macdonald process, Journal of Algebraic Combinatorics, Volume 54 (2021) no. 1, p. 223 | DOI:10.1007/s10801-020-00976-x
- Free field theory and observables of periodic Macdonald processes, Journal of Combinatorial Theory, Series A, Volume 182 (2021), p. 105473 | DOI:10.1016/j.jcta.2021.105473
- Asymptotics of free fermions in a quadratic well at finite temperature and the Moshe–Neuberger–Shapiro random matrix model, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 56 (2020) no. 2 | DOI:10.1214/19-aihp994
- Stationary Half-Space Last Passage Percolation, Communications in Mathematical Physics, Volume 377 (2020) no. 1, p. 421 | DOI:10.1007/s00220-020-03712-5
- HALF-SPACE MACDONALD PROCESSES, Forum of Mathematics, Pi, Volume 8 (2020) | DOI:10.1017/fmp.2020.3
- Six-vertex Models and the GUE-corners Process, International Mathematics Research Notices, Volume 2020 (2020) no. 6, p. 1794 | DOI:10.1093/imrn/rny072
- Current statistics in the q-boson zero range process, Journal of Physics A: Mathematical and Theoretical, Volume 53 (2020) no. 36, p. 365203 | DOI:10.1088/1751-8121/aba026
- Stationary stochastic Higher Spin Six Vertex Model and q-Whittaker measure, Probability Theory and Related Fields, Volume 177 (2020) no. 3-4, p. 923 | DOI:10.1007/s00440-020-00966-x
- q-Zero Range has Random Walking Shocks, Journal of Statistical Physics, Volume 174 (2019) no. 5, p. 958 | DOI:10.1007/s10955-018-02218-8
- Fluctuations for stationary q-TASEP, Probability Theory and Related Fields, Volume 174 (2019) no. 1-2, p. 647 | DOI:10.1007/s00440-018-0868-3
- Tracy-Widom Asymptotics for a River Delta Model, Stochastic Dynamics Out of Equilibrium, Volume 282 (2019), p. 483 | DOI:10.1007/978-3-030-15096-9_17
- Distributions of a particle’s position and their asymptotics in the q-deformed totally asymmetric zero range process with site dependent jumping rates, Stochastic Processes and their Applications, Volume 129 (2019) no. 5, p. 1795 | DOI:10.1016/j.spa.2018.06.005
- KPZ and Airy limits of Hall–Littlewood random plane partitions, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 54 (2018) no. 2 | DOI:10.1214/16-aihp817
- Transversal Fluctuations of the ASEP, Stochastic Six Vertex Model, and Hall-Littlewood Gibbsian Line Ensembles, Communications in Mathematical Physics, Volume 363 (2018) no. 2, p. 435 | DOI:10.1007/s00220-018-3139-3
- Inhomogeneous exponential jump model, Probability Theory and Related Fields, Volume 172 (2018) no. 1-2, p. 323 | DOI:10.1007/s00440-017-0810-0
- Limit distributions for KPZ growth models with spatially homogeneous random initial conditions, The Annals of Applied Probability, Volume 28 (2018) no. 3 | DOI:10.1214/17-aap1338
- Stochastic higher spin six vertex model and q-TASEPs, Advances in Mathematics, Volume 317 (2017), p. 473 | DOI:10.1016/j.aim.2017.07.003
- A Pfaffian Representation for Flat ASEP, Communications on Pure and Applied Mathematics, Volume 70 (2017) no. 1, p. 3 | DOI:10.1002/cpa.21644
- Random-walk in Beta-distributed random environment, Probability Theory and Related Fields, Volume 167 (2017) no. 3-4, p. 1057 | DOI:10.1007/s00440-016-0699-z
- Stochastic six-vertex model, Duke Mathematical Journal, Volume 165 (2016) no. 3 | DOI:10.1215/00127094-3166843
- Determinantal Structures in the O’Connell-Yor Directed Random Polymer Model, Journal of Statistical Physics, Volume 163 (2016) no. 4, p. 675 | DOI:10.1007/s10955-016-1492-1
- The
-Hahn asymmetric exclusion process, The Annals of Applied Probability, Volume 26 (2016) no. 4 | DOI:10.1214/15-aap1148
Cité par 29 documents. Sources : Crossref