Nous considérons un modèle d’évolution d’une population avec interaction entre les individus, où les taux de naissance et de mort sont fonction de la taille de la population. Nous obtenons la limite en grande population après renormalisation, qui est solution de l’EDS
We consider a discrete model of population dynamics with interaction between individuals, where the birth and death rates are nonlinear functions of the population size. We obtain the large population limit of a renormalization of our model as the solution of the SDE
@article{AIHPB_2015__51_4_1290_0, author = {Ba, Mamadou and Pardoux, Etienne}, title = {Branching processes with interaction and a generalized {Ray{\textendash}Knight} {Theorem}}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1290--1313}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/14-AIHP621}, mrnumber = {3414448}, zbl = {1329.60298}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/14-AIHP621/} }
TY - JOUR AU - Ba, Mamadou AU - Pardoux, Etienne TI - Branching processes with interaction and a generalized Ray–Knight Theorem JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1290 EP - 1313 VL - 51 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/14-AIHP621/ DO - 10.1214/14-AIHP621 LA - en ID - AIHPB_2015__51_4_1290_0 ER -
%0 Journal Article %A Ba, Mamadou %A Pardoux, Etienne %T Branching processes with interaction and a generalized Ray–Knight Theorem %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1290-1313 %V 51 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/14-AIHP621/ %R 10.1214/14-AIHP621 %G en %F AIHPB_2015__51_4_1290_0
Ba, Mamadou; Pardoux, Etienne. Branching processes with interaction and a generalized Ray–Knight Theorem. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 4, pp. 1290-1313. doi : 10.1214/14-AIHP621. http://archive.numdam.org/articles/10.1214/14-AIHP621/
[1] Stopping times and tightness. Ann. Probab. 6 (1978) 335–340. | DOI | MR | Zbl
.[2] Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. | DOI | MR | Zbl
.[3] Stochastic equations, flows and measure-valued processes. Ann. Probab. 40 (2012) 813–857. | DOI | MR | Zbl
and .[4] Weak convergence of sequences of semi-martingales with applications to multitype branching processes. Adv. in Appl. Probab. 18 (1986) 20–65. | DOI | MR | Zbl
and .[5] The branching process with logistic growth. Ann. Probab. 15 (2005) 1506–1535. | MR | Zbl
.[6] Height and the total mass of the forest of genealogical trees of a large population with general competition. ESAIM Probab. Stat. 19 (2015) 172–193. | DOI | Numdam | MR | Zbl
and .[7] Trees under attack: A Ray–Knight representation of Feller’s branching diffusion with logistic growth. Probab. Theory Related Fields 155 (2013) 583–619. | DOI | MR | Zbl
, and .[8] Self-avoiding random walks: A Brownian motion model with local time drift. Probab. Theory Related Fields 74 (1987) 271–287. | DOI | MR | Zbl
, and .[9] From Brownian motion with a local time drift to Feller’s branching diffusion with logistic growth. Electron. Commun. Probab. 16 (2011) 720–731. | DOI | MR | Zbl
and .[10] A path-valued Markov process indexed by the ancestral mass. ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015) 193–212. | MR | Zbl
and .[11] Continuous Martingales and Brownian Motion, 3d edition. Grundlehren der Mathematischen Wissenschaften 293. Springer, Berlin, 1999. | DOI | MR | Zbl
and .[12] Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233. Springer, Berlin, 1979. | MR | Zbl
and .Cité par Sources :