In (Ann. Inst. Henri Poincaré Probab. Stat. 34 (1998) 637–686) a tree-valued Markov chain is derived by pruning off more and more subtrees along the edges of a Galton–Watson tree. More recently, in (Ann. Probab. 40 (2012) 1167–1211), a continuous analogue of the tree-valued pruning dynamics is constructed along Lévy trees. In the present paper, we provide a new topology which allows to link the discrete and the continuous dynamics by considering them as instances of the same strong Markov process with different initial conditions. We construct this pruning process on the space of so-called bi-measure trees, which are metric measure spaces with an additional pruning measure. The pruning measure is assumed to be finite on finite trees, but not necessarily locally finite. We also characterize the pruning process analytically via its Markovian generator and show that it is continuous in the initial bi-measure tree. A series of examples is given, which include the finite variance offspring case where the pruning measure is the length measure on the underlying tree.
Dans (Ann. Inst. Henri Poincaré Probab. Stat. 34 (1998) 637–686), les auteurs obtiennent une chaîne de Markov à valeurs arbres en élaguant de plus en plus de sous-arbres le long des nœuds d’un arbre de Galton–Watson. Plus récemment dans (Ann. Probab. 40 (2012) 1167–1211), un analogue continu de la dynamique d’élagage à valeurs arbres est construit sur des arbres de Lévy. Dans cet article, nous présentons une nouvelle topologie qui permet de relier les dynamiques discrètes et continues en les considérant comme des exemples du même processus de Markov fort avec des conditions initiales différentes. Nous construisons ce processus d’élagage sur l’espace des arbres appelés bi-mesurés, qui sont des espaces métriques mesurés avec une mesure d’élagage additionnelle. La mesure d’élagage est supposée finie sur les arbres finis, mais pas nécessairement localement finie. De plus, nous caractérisons analytiquement le processus d’élagage par son générateur infinitésimal et montrons qu’il est continu en son arbre bi-mesuré initial. Plusieurs exemples sont donnés, notamment le cas d’une loi de reproduction à variance finie où la mesure d’élagage est la mesure des longueurs sur l’arbre sous-jacent.
@article{AIHPB_2015__51_4_1342_0, author = {L\"ohr, Wolfgang and Voisin, Guillaume and Winter, Anita}, title = {Convergence of bi-measure $\mathbb {R}$-trees and the pruning process}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1342--1368}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/14-AIHP628}, mrnumber = {3414450}, zbl = {1339.60123}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/14-AIHP628/} }
TY - JOUR AU - Löhr, Wolfgang AU - Voisin, Guillaume AU - Winter, Anita TI - Convergence of bi-measure $\mathbb {R}$-trees and the pruning process JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1342 EP - 1368 VL - 51 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/14-AIHP628/ DO - 10.1214/14-AIHP628 LA - en ID - AIHPB_2015__51_4_1342_0 ER -
%0 Journal Article %A Löhr, Wolfgang %A Voisin, Guillaume %A Winter, Anita %T Convergence of bi-measure $\mathbb {R}$-trees and the pruning process %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1342-1368 %V 51 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/14-AIHP628/ %R 10.1214/14-AIHP628 %G en %F AIHPB_2015__51_4_1342_0
Löhr, Wolfgang; Voisin, Guillaume; Winter, Anita. Convergence of bi-measure $\mathbb {R}$-trees and the pruning process. Annales de l'I.H.P. Probabilités et statistiques, Volume 51 (2015) no. 4, pp. 1342-1368. doi : 10.1214/14-AIHP628. http://archive.numdam.org/articles/10.1214/14-AIHP628/
[1] Fragmentation associated with Lévy processes using snake. Probab. Theory Related Fields 141 (2008) 113–154. | DOI | MR | Zbl
and .[2] A continuum-tree-valued Markov process. Ann. Probab. 40 (3) (2012) 1167–1211. | MR | Zbl
and .[3] Record process on the continuum random tree. ALEA Lat. Am. J. Probab. Math. Stat. 10 (1) (2013) 225–251. | MR | Zbl
and .[4] Pruning Galton–Watson trees and tree-valued Markov process. Ann. Inst. Henri Poincaré Probab. Stat. 48 (3) (2012). | EuDML | Numdam | MR | Zbl
, and .[5] A note on the Gromov–Hausdorff–Prokhorov distance between (locally) compact metric measure spaces. Electron. J. Probab. 18 (14) (2013) 1–21. | MR | Zbl
, and .[6] Exit times for an increasing Lévy tree-valued process. Probab. Theory Related Fields 159 (1–2) (2014) 357–403. | MR | Zbl
, and .[7] Pruning a Lévy continuum random tree. Electron. J. Probab. 15 (46) (2010) 1429–1473. | MR | Zbl
, and .[8] Poisson snake and fragmentation. Electron. J. Probab. 7 (2002) 1–15. | DOI | EuDML | MR | Zbl
and .[9] The continuum random tree I. Ann. Probab. 19 (1991) 1–28. | DOI | MR | Zbl
.[10] The continuum random tree III. Ann. Probab. 21 (1993) 248–289. | DOI | MR | Zbl
.[11] The standard additive coalescent. Ann. Probab. 26 (4) (1998) 1703–1726. | MR | Zbl
and .[12] Tree-valued Markov chains derived from Galton–Watson processes. Ann. Inst. Henri. Poincaré Probab. Stat. 34 (5) (1998) 637–686. | Numdam | MR | Zbl
and .[13] The gap between Gromov-vague and Gromov–Hausdorff-vague topology. Preprint, 2014. Available at arXiv:1407.6309. | MR | Zbl
, and .[14] Fires on trees. Ann. Inst. Henri Poincaré Probab. Stat. 48 (4) (2012) 909–921. | Numdam | MR | Zbl
.[15] The cut-tree of large Galton–Watson trees and the Brownian CRT. Ann. Appl. Probab. 23 (4) (2013) 1469–1493. | MR | Zbl
and .[16] Convergence of Probability Measures. Wiley, New York, 1999. | DOI | MR | Zbl
.[17] On convergence determining and separating classes of functions. Stochastic Process. Appl. 120 (10) (2010) 1898–1907. | MR | Zbl
and .[18] Measure Theory, Vol. I. Springer, Berlin, 2007. | DOI | MR | Zbl
.[19] A Course in Metric Geometry. Graduate Studies in Mathematics 33. Amer. Math. Soc., Providence, RI, 2001. | DOI | MR | Zbl
, and .[20] The stable trees are nested. Probab. Theory Related Fields 157 (2012) 847–883. | DOI | MR | Zbl
and .[21] Marked metric measure spaces. Electron. Commun. Probab. 16 (2011) 174–188. | DOI | MR | Zbl
, and .[22] The real tree. Adv. Math. 120 (1996) 283–301. | DOI | MR | Zbl
and .[23] T-theory: An overview. European J. Combin. 17 (2–3) (1996). | MR | Zbl
, and .[24] A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Random Structures Algorithms 34 (2009) 319–336. | DOI | MR | Zbl
, , and .[25] Real Analysis and Probability. Cambridge Univ. Press, Cambridge, 2002. | MR | Zbl
.[26] A limit theorem for the contour process of conditioned Galton–Watson trees. Ann. Probab. 31 (2) (2003) 996–1027. | MR | Zbl
.[27] Random trees, Lévy processes and spatial branching processes. Astérisque 281 (2002) vi+147. | Numdam | MR | Zbl
and .[28] Markov Processes. Characterization and Convergence. Wiley, New York, 1986. | MR | Zbl
and .[29] Probability and real trees. In École d’Été de Probabilités de Saint Flour XXXV-2005. Lecture Notes in Mathematics 1920. Springer, Berlin. 2007. | MR | Zbl
.[30] Subtree prune and re-graft: A reversible real-tree valued Markov chain. Ann. Probab. 34 (3) (2006) 918–961. | MR | Zbl
and .[31] Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Related Fields 134 (1) (2006) 81–126. | MR | Zbl
, and .[32] Collapsing of Riemannian manifolds and eigenvalues of Laplace operator. Invent. Math. 87 (3) (1987) 517–547. | MR | Zbl
.[33] Convergence in distribution of random metric measure spaces1–2) (2009) 285–322. | MR | Zbl
, and .[34] Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics 152. Birkhäuser, Boston, MA, 1999. | MR | Zbl
.[35] Probability in Banach spaces. In École d’Été de Probabilités de Saint Flour VI-1976. Lecture Notes in Mathematics 598. Springer, Berlin, 1977. | MR | Zbl
.[36] Random records and cuttings in binary search trees. Combin. Probab. Comput. 19 (2010) 391–424. | DOI | MR | Zbl
.[37] Random cuttings and records in deterministic and random trees. Random Structures Algorithms 29 (2006) 139–179. | DOI | MR | Zbl
.[38] Convergence in distribution of stochastic processes. Univ. Calif. Publ. Statist. 2 (1957) 207–236. | MR | Zbl
.[39] Equivalence of Gromov–Prohorov- and Gromov’s -metric on the space of metric measure spaces. Electron. Commun. Probab. 18 (2013) no. 17, 10. | MR | Zbl
.[40] Random walks, capacities, and percolation on trees. Ann. Probab. 20 (1992) 2043–2088. | MR | Zbl
.[41] Cutting down random trees. J. Aust. Math. Soc. 11 (1970). | MR | Zbl
and .[42] Self-similar fragmentations derived from the stable tree I: Splitting at heights. Probab. Theory Related Fields 127 (2003) 423–454. | DOI | MR | Zbl
.[43] Self-similar fragmentations derived from the stable tree II: Splitting at nodes. Probab. Theory Related Fields 131 (2005) 341–375. | DOI | MR | Zbl
.[44] Tessellations of random maps of arbitrary genus. Ann. Sci. Ec. Norm. Super. (4) 42 (2009) 725–781. | Numdam | MR | Zbl
.[45] Cutting down very simple trees. Quaest. Math. 29 (2006) 211–227. | DOI | MR | Zbl
.[46] Optimal Transport. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. | DOI | MR | Zbl
.[47] Dislocation measure of the fragmentation of a general Lévy tree. ESAIM Probab. Stat. 15 (2011) 372–389. | DOI | Numdam | MR | Zbl
.Cited by Sources: