@article{ASENS_1968_4_1_4_617_0, author = {Goldschmidt, Hubert}, title = {Prolongations of linear partial differential equations. {II.} {Inhomogeneous} equations}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {617--625}, publisher = {Elsevier}, volume = {Ser. 4, 1}, number = {4}, year = {1968}, doi = {10.24033/asens.1173}, mrnumber = {39 #4878}, zbl = {0172.13602}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1173/} }
TY - JOUR AU - Goldschmidt, Hubert TI - Prolongations of linear partial differential equations. II. Inhomogeneous equations JO - Annales scientifiques de l'École Normale Supérieure PY - 1968 SP - 617 EP - 625 VL - 1 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1173/ DO - 10.24033/asens.1173 LA - en ID - ASENS_1968_4_1_4_617_0 ER -
%0 Journal Article %A Goldschmidt, Hubert %T Prolongations of linear partial differential equations. II. Inhomogeneous equations %J Annales scientifiques de l'École Normale Supérieure %D 1968 %P 617-625 %V 1 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.24033/asens.1173/ %R 10.24033/asens.1173 %G en %F ASENS_1968_4_1_4_617_0
Goldschmidt, Hubert. Prolongations of linear partial differential equations. II. Inhomogeneous equations. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 1 (1968) no. 4, pp. 617-625. doi : 10.24033/asens.1173. http://archive.numdam.org/articles/10.24033/asens.1173/
[1] Existence theorems for analytic linear partial differential equations (Ann. Math., vol. 86, 1967, p. 246-270). | MR | Zbl
,[2] Prolongations of linear partial differential equations. I. A conjecture of Élie Cartan (Ann. scient. Éc. Norm. Sup., 4e série, t. 1, 1968, p. 417-444). | Numdam | MR | Zbl
,[3] Formal properties of over-determined systems of linear partial differential equations (Ph. D. Thesis, Harvard University, 1964).
,[4] Deformation of structures on manifolds defined by transitive, continuous pseudogroups. I-II (Ann. Math., vol. 76, 1962, p. 306-445). | MR | Zbl
,Cited by Sources: