Sur la formule des traces de Selberg
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 4 (1971) no. 2, pp. 193-284.
@article{ASENS_1971_4_4_2_193_0,
     author = {Duflo, Michel and Labesse, Jean-Pierre},
     title = {Sur la formule des traces de {Selberg}},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {193--284},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 4},
     number = {2},
     year = {1971},
     doi = {10.24033/asens.1210},
     mrnumber = {55 #10392},
     zbl = {0277.12011},
     language = {fr},
     url = {https://www.numdam.org/articles/10.24033/asens.1210/}
}
TY  - JOUR
AU  - Duflo, Michel
AU  - Labesse, Jean-Pierre
TI  - Sur la formule des traces de Selberg
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1971
SP  - 193
EP  - 284
VL  - 4
IS  - 2
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1210/
DO  - 10.24033/asens.1210
LA  - fr
ID  - ASENS_1971_4_4_2_193_0
ER  - 
%0 Journal Article
%A Duflo, Michel
%A Labesse, Jean-Pierre
%T Sur la formule des traces de Selberg
%J Annales scientifiques de l'École Normale Supérieure
%D 1971
%P 193-284
%V 4
%N 2
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1210/
%R 10.24033/asens.1210
%G fr
%F ASENS_1971_4_4_2_193_0
Duflo, Michel; Labesse, Jean-Pierre. Sur la formule des traces de Selberg. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 4 (1971) no. 2, pp. 193-284. doi : 10.24033/asens.1210. https://www.numdam.org/articles/10.24033/asens.1210/

[1] V. Bargmann, Irreducible unitary representation of the Lorentz group [Ann. of Math., (2), vol. 48, 1947, p. 568-640]. | MR | Zbl

[2] M. Bateman and A. Erdélyi, Tables of Integral Transforms, ..., vol. I, Mac Graw-Hill Book Company, 1954.

[3] A. Blanchard, Initiation à la théorie analytique des nombres premiers, Dunod, Paris, 1969. | MR | Zbl

[4] A. Borel, Ensembles fondamentaux pour les groupes arithmétiques et formes automorphes, Secrét. Math. E. N. S., 45, rue d'Ulm, Paris, 5e, 1967.

[5] M. Duflo et J.-P. Labesse, C. R. Acad. Sc., t. 270, série A, 1970, p. 1154-1157. | MR | Zbl

[6] L. Ehrenpreis and F. I. Mautner, Some properties of the Fourier-transforms on semisimple Lie groups. I [Ann. of. Math., (2), vol. 61, 1955, p. 406-439]. | MR | Zbl

[7] L. Ehrenpreis and F. I. Mautner, Some properties of the Fourier-transforms on semisimple Lie groups. II (Trans. Amer. Math. Soc., vol. 84, 1957, p. 1-55). | MR | Zbl

[8] L. Ehrenpreis and F. I. Mautner, Some properties of the Fourier-transforms on semisimple Lie groups. III (Trans. Amer. Math. Soc., vol. 90, 1959, p. 431-484). | MR | Zbl

[9] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale (Math. Z., Bd. 67, 1957, p. 267-298). | MR | Zbl

[10] D. K. Faddeev, Décomposition en fonctions propres de l'opérateur de Laplace sur le domaine fondamental d'un groupe discret opérant sur le plan de Lobatchevski (en russe) (Trudy Mosk. Mat. o. Ba., vol. 17, 1967).

[11] I. M. Gel'Fand, M. I. Graev and I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions, W. B. Saunders Company, 1969. | MR | Zbl

[12] R. Godement, A Theory of Spherical Functions. I (Trans. Amer. Math. Soc., vol. 73, 1952, p. 496-556). | MR | Zbl

[13] R. Godement, Analyse spectrale des fonctions modulaires, Séminaire Bourbaki, Exp. 278, vol. 1964-1965, W. A. Benjamin Inc., New York, 1966. | Numdam | Zbl

[14] Harish-Chandra, Spherical functions on a semisimple Lie group. II (Amer. J. Math., vol. 80, 1958, p. 241-310). | MR | Zbl

[15] Harish-Chandra, Automorphic forms on semisimple Lie groups (Lecture Notes in Mathematics, n° 62, Springer-Verlag, 1968). | MR | Zbl

[16] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, 1963.

[17] Y. Ihara, Hecke polynomials as congruence ζ functions in elliptic modular case (Ann. of Math., vol. 85, 1967, p. 267-295). | MR | Zbl

[18] H. Jacquet and R. P. Langlands, Automorphic Forms on GL (2) (Lecture Notes in Mathematics, n° 114, Springer-Verlag, 1970). | MR | Zbl

[19] R. P. Langlands, Functional Equations satisfied by Eisenstein series (Preprint).

[20] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces, with applications to Dirichlet series (J. Indian Math. Soc., vol. 20, 1956, p. 47-87). | MR | Zbl

[21] A. Selberg, Discontinuous groups and Harmonic Analysis, Proceedings of the International Congress of Mathematiciens, Stockholm, 1962.

[22] J. Tate, Fourier Analysis in Number Fields and Hecke's Zeta-Functions (Thesis, 1950); in Algebraic Number Theory, Academic Press, 1967.

  • Luo, Zhilin; Pi, Qinghua; Wu, Han Bias of root numbers for Hilbert newforms of cubic level, Journal of Number Theory, Volume 243 (2023), p. 62 | DOI:10.1016/j.jnt.2022.08.008
  • Martin, Kimball The basis problem revisited, Transactions of the American Mathematical Society, Volume 373 (2020) no. 7, p. 4523 | DOI:10.1090/tran/8077
  • Joyner, David; Kim, Jon-Lark Codes from Modular Curves, Selected Unsolved Problems in Coding Theory (2011), p. 145 | DOI:10.1007/978-0-8176-8256-9_6
  • Joyner, David; Shokranian, Salahoddin Remarks on codes from modular curves: MAPLE applications, Coding Theory and Cryptography (2000), p. 229 | DOI:10.1007/978-3-642-59663-6_13
  • Hiraga, Kaoru On the multiplicities of the discrete series of semisimple Lie groups, Duke Mathematical Journal, Volume 85 (1996) no. 1 | DOI:10.1215/s0012-7094-96-08507-5
  • Labesse, J.-P. Signature des variétés modulaires de Hilbert et representations diédrales, Cohomology of Arithmetic Groups and Automorphic Forms, Volume 1447 (1990), p. 249 | DOI:10.1007/bfb0085732
  • Joyner, David On the Kuznetsov-Bruggeman formula for a Hilbert modular surface having one cusp, Mathematische Zeitschrift, Volume 203 (1990) no. 1, p. 59 | DOI:10.1007/bf02570723
  • ARTHUR, JAMES The Trace Formula and Hecke Operators, Number Theory, Trace Formulas and Discrete Groups (1989), p. 11 | DOI:10.1016/b978-0-12-067570-8.50010-x
  • Labesse, J. -P.; Schwermer, J. On liftings and cusp cohomology of arithmetic groups, Inventiones Mathematicae, Volume 83 (1986) no. 2, p. 383 | DOI:10.1007/bf01388968
  • Ferguson, H. R. P.; Major, R. D.; Powell, K. E.; Throolin, H. G. On zeros of Mellin transforms of 𝑆𝐿₂(𝑍) cusp forms, Mathematics of Computation, Volume 42 (1984) no. 165, p. 241 | DOI:10.1090/s0025-5718-1984-0726002-2
  • Arthur, James G. A trace formula for reductive groups I terms associated to classes in G(Q), Duke Mathematical Journal, Volume 45 (1978) no. 4 | DOI:10.1215/s0012-7094-78-04542-8
  • Wallach, Nolan R. On the Selberg trace formula in the case of compact quotient, Bulletin of the American Mathematical Society, Volume 82 (1976) no. 2, p. 171 | DOI:10.1090/s0002-9904-1976-13979-1
  • Langlands, R. P. Modular Forms and ℓ-Adic Representations, Modular Functions of One Variable II, Volume 349 (1973), p. 361 | DOI:10.1007/978-3-540-37855-6_6

Cité par 13 documents. Sources : Crossref