Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 19 (1986) no. 4, pp. 519-542.
DOI : 10.24033/asens.1516
Degond, Pierre 1

1 MIP, UMR CNRS 5640, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France.
@article{ASENS_1986_4_19_4_519_0,
     author = {Degond, Pierre},
     title = {Global existence of smooth solutions for the {Vlasov-Fokker-Planck} equation in $1$ and $2$ space dimensions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {519--542},
     publisher = {Elsevier},
     volume = {Ser. 4, 19},
     number = {4},
     year = {1986},
     doi = {10.24033/asens.1516},
     mrnumber = {88d:35168},
     zbl = {0619.35087},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.1516/}
}
TY  - JOUR
AU  - Degond, Pierre
TI  - Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1986
SP  - 519
EP  - 542
VL  - 19
IS  - 4
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1516/
DO  - 10.24033/asens.1516
LA  - en
ID  - ASENS_1986_4_19_4_519_0
ER  - 
%0 Journal Article
%A Degond, Pierre
%T Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions
%J Annales scientifiques de l'École Normale Supérieure
%D 1986
%P 519-542
%V 19
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1516/
%R 10.24033/asens.1516
%G en
%F ASENS_1986_4_19_4_519_0
Degond, Pierre. Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 19 (1986) no. 4, pp. 519-542. doi : 10.24033/asens.1516. https://www.numdam.org/articles/10.24033/asens.1516/

[1] A. A. Arsenev, Global existence of a weak solution of Vlasov's system of equations (USSR comput. Math. and Math. Phys., Vol. 15, 1975, pp. 131-143).

[2] M. S. Baquendi and P. Grisvard, Sur une équation d'évolution changeant de type (J. of functional analysis, 1968, pp. 352-367). | MR | Zbl

[3] C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data to appear in Ann. Inst. Henri-Poincaré ; Analyse non linéaire, Vol. 2, No. 2, 1985, pp. 101-118. | EuDML | Numdam | MR | Zbl

[4] J. T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for the 3.D Euler equations, Preprint, university of Berkeley. | Zbl

[5] P. Degond, Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Internal Report No. 117, Centre de Mathématiques appliquées, Ecole Polytechnique, Paris. | Zbl

[6] P. Degond and S. Gallic, Existence of solutions and diffusion approximation for a model Fokker-Planck equation of a monoenergetic plasma, Manuscript to appear in internal reports, Ecole Polytechnique. | Zbl

[7] E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation (Math. meth. in the appl. Sci, Vol. 3, 1981, pp. 229-248). | MR | Zbl

[8] R. Illner and H. Neunzert, An existence theorem for the unmodified Vlasov equation (Math. meth. in the appl. Sci., Vol. 1, 1979, pp. 530-554). | MR | Zbl

[9] S. V. Iordanskii, The Cauchy problem for the kinetic equation of Plasma (Amer. Math. Soc. Trans., Vol. 2-35, 1964, pp. 351-363). | Zbl

[10] J. L. Lions, Equations différentielles opérationnelles et problèmes aux limites, Springer, Berlin, 1961. | Zbl

[11] H. Neunzert, M. Pulvirenti and L. Triolo, On the Vlasov-Fokker-Planck equation, preprint n° 77, Fachbereich Mathematik, Universitöt Kaiserlautern, January 1984. | MR

[12] L. Tartar, Topics is nonlinear analysis, Publications mathématiques de l'Université de Paris-Sud (Orsay), novembre 1978. | Zbl

[13] S. Ukai and T. Okabe, On the classical solution in the large in time of the two dimensional Vlasov equation (Osaka J. of math., Vol. 15, 1978, pp. 245-261). | MR | Zbl

[14] S. Wollman, Existence and uniqueness theory of the Vlasov equation, Internal report, Courant Institute, New York, October 1982.

  • Wang, Yiliu; Zhang, Xianwen Local wellposedness of the Vlasov‐Riesz‐Fokker‐Planck system in modulation space, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 3, p. 3581 | DOI:10.1002/mma.10502
  • Nastasi, Giovanni; Borzì, Alfio; Romano, Vittorio Optimal control of a semiclassical Boltzmann equation for charge transport in graphene, Communications in Nonlinear Science and Numerical Simulation, Volume 132 (2024), p. 107933 | DOI:10.1016/j.cnsns.2024.107933
  • Cesbron, Ludovic; Herda, Maxime On a Vlasov-Fokker-Planck equation for stored electron beams, Journal of Differential Equations, Volume 404 (2024), p. 316 | DOI:10.1016/j.jde.2024.05.056
  • Choi, Young-Pil; Jeong, In-Jee; Kang, Kyungkeun Global Cauchy problem for the Vlasov–Riesz–Fokker–Planck system near the global Maxwellian, Journal of Evolution Equations, Volume 24 (2024) no. 3 | DOI:10.1007/s00028-024-00995-2
  • Bayraktar, Erhan; Feng, Qi; Li, Wuchen Exponential Entropy Dissipation for Weakly Self-Consistent Vlasov–Fokker–Planck Equations, Journal of Nonlinear Science, Volume 34 (2024) no. 1 | DOI:10.1007/s00332-023-09984-0
  • Sun, Weiran; Wang, Li Uniform error estimate of an asymptotic preserving scheme for the Lévy-Fokker-Planck equation, Mathematics of Computation (2024) | DOI:10.1090/mcom/3975
  • Mimikos-Stamatopoulos, Nikiforos Weak and Renormalized Solutions to a Hypoelliptic Mean Field Games System, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 2, p. 2312 | DOI:10.1137/22m1497936
  • Choi, Young-Pil; Jung, Jinwook On the dynamics of charged particles in an incompressible flow: From kinetic-fluid to fluid–fluid models, Communications in Contemporary Mathematics, Volume 25 (2023) no. 07 | DOI:10.1142/s0219199722500122
  • Chen, Jingchun; He, Cong Local well-posedness of VPFP in hybrid modulation-Lebesgue space, Journal of Differential Equations, Volume 373 (2023), p. 216 | DOI:10.1016/j.jde.2023.07.016
  • Choi, Young-Pil; Jeong, In-Jee Global-in-time existence of weak solutions for Vlasov-Manev-Fokker-Planck system, Kinetic and Related Models, Volume 16 (2023) no. 1, p. 41 | DOI:10.3934/krm.2022021
  • Li, Donghao; Ma, Yaxian; Zhang, Xianwen Local existence of weak solutions to kinetic Cucker‐Smale‐Fokker‐Planck equation with singular commutation weights, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 9, p. 9902 | DOI:10.1002/mma.9092
  • Cao, Jiachuan; Cao, Li-qun Convergence of a Direct Simulation Monte Carlo Method for the Space Inhomogeneous Semiconductor Boltzmann Equations with Multi-valley, Multiscale Modeling Simulation, Volume 21 (2023) no. 3, p. 884 | DOI:10.1137/22m1469511
  • Blaustein, Alain Diffusive Limit of the Vlasov–Poisson–Fokker–Planck Model: Quantitative and Strong Convergence Results, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 5, p. 5464 | DOI:10.1137/22m1530197
  • Choi, Young-Pil; Tse, Oliver Quantified overdamped limit for kinetic Vlasov–Fokker–Planck equations with singular interaction forces, Journal of Differential Equations, Volume 330 (2022), p. 150 | DOI:10.1016/j.jde.2022.05.008
  • Carrillo, José A.; Choi, Young-Pil; Peng, Yingping Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system, Kinetic and Related Models, Volume 15 (2022) no. 3, p. 355 | DOI:10.3934/krm.2021052
  • Briant, Marc; Diez, Antoine; Merino-Aceituno, Sara Cauchy Theory for General Kinetic Vicsek Models in Collective Dynamics and Mean-Field Limit Approximations, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 1, p. 1131 | DOI:10.1137/21m1405885
  • Camilli, Fabio A Quadratic Mean Field Games Model for the Langevin Equation, Axioms, Volume 10 (2021) no. 2, p. 68 | DOI:10.3390/axioms10020068
  • Chen, Jingchun; He, Cong Vlasov–Poisson–Fokker–Planck equation in E2,1s space, Illinois Journal of Mathematics, Volume 65 (2021) no. 3 | DOI:10.1215/00192082-9402086
  • Tervo, Jouko On Global Existence and Regularity of Solutions for a Transport Problem Related to Charged Particles, Journal of Computational and Theoretical Transport, Volume 50 (2021) no. 3, p. 180 | DOI:10.1080/23324309.2020.1851722
  • Flandoli, Franco; Leocata, Marta; Ricci, Cristiano The Navier–Stokes–Vlasov–Fokker–Planck System as a Scaling Limit of Particles in a Fluid, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 2 | DOI:10.1007/s00021-021-00570-6
  • Rachid, Mohamad Incompressible Navier-Stokes-Fourier limit from the Landau equation, Kinetic Related Models, Volume 14 (2021) no. 4, p. 599 | DOI:10.3934/krm.2021017
  • Tyranowski, Tomasz M. Stochastic variational principles for the collisional Vlasov–Maxwell and Vlasov–Poisson equations, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 477 (2021) no. 2252 | DOI:10.1098/rspa.2021.0167
  • Hwang, Hyung Ju; Jang, Jin Woo; Jo, Hyeontae; Lee, Jae Yong Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach, Journal of Computational Physics, Volume 419 (2020), p. 109665 | DOI:10.1016/j.jcp.2020.109665
  • Kim, Dohyun; Kim, Jeongho Stochastic Lohe Matrix Model on the Lie Group and Mean-Field Limit, Journal of Statistical Physics, Volume 178 (2020) no. 6, p. 1467 | DOI:10.1007/s10955-020-02516-0
  • Huang, Hui; Liu, Jian-Guo; Pickl, Peter On the Mean-Field Limit for the Vlasov–Poisson–Fokker–Planck System, Journal of Statistical Physics, Volume 181 (2020) no. 5, p. 1915 | DOI:10.1007/s10955-020-02648-3
  • Lebeau, Gilles; Puel, Marjolaine Diffusion Approximation for Fokker Planck with Heavy Tail Equilibria: A Spectral Method in Dimension 1, Communications in Mathematical Physics, Volume 366 (2019) no. 2, p. 709 | DOI:10.1007/s00220-019-03315-9
  • Aceves-Sanchez, Pedro; Cesbron, Ludovic Fractional Diffusion Limit for a Fractional Vlasov–Fokker–Planck Equation, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 1, p. 469 | DOI:10.1137/17m1152073
  • Bonilla, Luis L.; Carpio, Ana; Carretero, Manuel; Duro, Gema; Negreanu, Mihaela; Terragni, Filippo A convergent numerical scheme for integrodifferential kinetic models of angiogenesis, Journal of Computational Physics, Volume 375 (2018), p. 1270 | DOI:10.1016/j.jcp.2018.09.008
  • Herda, Maxime; Rodrigues, L. Miguel Large-Time Behavior of Solutions to Vlasov-Poisson-Fokker-Planck Equations: From Evanescent Collisions to Diffusive Limit, Journal of Statistical Physics, Volume 170 (2018) no. 5, p. 895 | DOI:10.1007/s10955-018-1963-7
  • Carpio, Ana; Duro, Gema; Negreanu, Mihaela Constructing solutions for a kinetic model of angiogenesis in annular domains, Applied Mathematical Modelling, Volume 45 (2017), p. 303 | DOI:10.1016/j.apm.2016.12.028
  • Duong, Manh Hong; Lamacz, Agnes; Peletier, Mark A.; Sharma, Upanshu Variational approach to coarse-graining of generalized gradient flows, Calculus of Variations and Partial Differential Equations, Volume 56 (2017) no. 4 | DOI:10.1007/s00526-017-1186-9
  • Ha, Seung-Yeal; Jeong, Jiin; Noh, Se Eun; Xiao, Qinghua; Zhang, Xiongtao Emergent dynamics of Cucker–Smale flocking particles in a random environment, Journal of Differential Equations, Volume 262 (2017) no. 3, p. 2554 | DOI:10.1016/j.jde.2016.11.017
  • Casas, Fernando; Crouseilles, Nicolas; Faou, Erwan; Mehrenberger, Michel High-order Hamiltonian splitting for the Vlasov–Poisson equations, Numerische Mathematik, Volume 135 (2017) no. 3, p. 769 | DOI:10.1007/s00211-016-0816-z
  • Carrillo, José A.; Choi, Young-Pil; Karper, Trygve K. On the analysis of a coupled kinetic-fluid model with local alignment forces, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 33 (2016) no. 2, p. 273 | DOI:10.1016/j.anihpc.2014.10.002
  • Duong, M.H.; Tugaut, J. Stationary solutions of the Vlasov–Fokker–Planck equation: Existence, characterization and phase-transition, Applied Mathematics Letters, Volume 52 (2016), p. 38 | DOI:10.1016/j.aml.2015.08.003
  • Gamba, Irene M.; Kang, Moon-Jin Global Weak Solutions for Kolmogorov–Vicsek Type Equations with Orientational Interactions, Archive for Rational Mechanics and Analysis, Volume 222 (2016) no. 1, p. 317 | DOI:10.1007/s00205-016-1002-2
  • Herda, Maxime On massless electron limit for a multispecies kinetic system with external magnetic field, Journal of Differential Equations, Volume 260 (2016) no. 11, p. 7861 | DOI:10.1016/j.jde.2016.02.005
  • Hérau, Frédéric; Thomann, Laurent On global existence and trend to the equilibrium for the Vlasov–Poisson–Fokker–Planck system with exterior confining potential, Journal of Functional Analysis, Volume 271 (2016) no. 5, p. 1301 | DOI:10.1016/j.jfa.2016.04.030
  • Schaeffer, Jack The Vlasov–Maxwell–Fokker–Planck system in two space dimensions, Mathematical Methods in the Applied Sciences, Volume 39 (2016) no. 2, p. 302 | DOI:10.1002/mma.3478
  • Carpio, Ana; Duro, Gema Well posedness of an integrodifferential kinetic model of Fokker–Planck type for angiogenesis, Nonlinear Analysis: Real World Applications, Volume 30 (2016), p. 184 | DOI:10.1016/j.nonrwa.2016.01.002
  • LUO, Lan; ZHANG, Xinping Global classical solutions for quantum kinetic fokker-planck equations, Acta Mathematica Scientia, Volume 35 (2015) no. 1, p. 140 | DOI:10.1016/s0252-9602(14)60147-8
  • Nasreddine, Elissar; Puel, Marjolaine Diffusion limit of Fokker−Planck equation with heavy tail equilibria, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 1, p. 1 | DOI:10.1051/m2an/2014020
  • Bossy, Mireille; Jabir, Jean-François Lagrangian stochastic models with specular boundary condition, Journal of Functional Analysis, Volume 268 (2015) no. 6, p. 1309 | DOI:10.1016/j.jfa.2014.11.016
  • Wu, Kung-Chien Pointwise Description for the Linearized Fokker–Planck–Boltzmann Model, Journal of Statistical Physics, Volume 160 (2015) no. 5, p. 1277 | DOI:10.1007/s10955-015-1206-0
  • Pankavich, Stephen; Michalowski, Nicholas Global classical solutions for the "One and one-half” dimensional relativistic Vlasov-Maxwell-Fokker-Planck system, Kinetic Related Models, Volume 8 (2015) no. 1, p. 169 | DOI:10.3934/krm.2015.8.169
  • Sueur, Franck Sur la dynamique de corps solides immergés dans un fluide incompressible, Séminaire Laurent Schwartz — EDP et applications (2014), p. 1 | DOI:10.5802/slsedp.39
  • Скубачевский, Александр Леонидович; Skubachevskii, Alexander Leonidovich Уравнения Власова - Пуассона для двукомпонентной плазмы в однородном магнитном поле, Успехи математических наук, Volume 69 (2014) no. 2(416), p. 107 | DOI:10.4213/rm9579
  • Chen, Jing Chun; He, Cong On local existence of the Vlasov-Fokker-Planck equation in a 2D anisotropic space, Boundary Value Problems, Volume 2013 (2013) no. 1 | DOI:10.1186/1687-2770-2013-233
  • Gosse, Laurent Klein-Kramers Equation and Burgers/Fokker-Planck Model of Spray, Computing Qualitatively Correct Approximations of Balance Laws, Volume 2 (2013), p. 241 | DOI:10.1007/978-88-470-2892-0_12
  • CHAE, MYEONGJU; KANG, KYUNGKEUN; LEE, JIHOON GLOBAL CLASSICAL SOLUTIONS FOR A COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL, Journal of Hyperbolic Differential Equations, Volume 10 (2013) no. 03, p. 537 | DOI:10.1142/s0219891613500197
  • Karper, Trygve K.; Mellet, Antoine; Trivisa, Konstantina Existence of Weak Solutions to Kinetic Flocking Models, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 1, p. 215 | DOI:10.1137/120866828
  • Egorov, S. M.; Khruslov, E. Ya. Global weak solutions of the Navier–Stokes–Fokker–Planck system, Ukrainian Mathematical Journal, Volume 65 (2013) no. 2, p. 212 | DOI:10.1007/s11253-013-0774-x
  • Cesbron, L.; Mellet, A.; Trivisa, K. Anomalous transport of particles in plasma physics, Applied Mathematics Letters, Volume 25 (2012) no. 12, p. 2344 | DOI:10.1016/j.aml.2012.06.029
  • Wollman, Stephen Numerical approximation of the Vlasov–Maxwell–Fokker–Planck system in two dimensions, Journal of Computational Physics, Volume 231 (2012) no. 9, p. 3483 | DOI:10.1016/j.jcp.2011.12.018
  • Jin, Shi; Wang, Li An asymptotic preserving scheme for the vlasov-poisson-fokker-planck system in the high field regime, Acta Mathematica Scientia, Volume 31 (2011) no. 6, p. 2219 | DOI:10.1016/s0252-9602(11)60395-0
  • Kagei, Yoshiyuki; Maekawa, Yasunori Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance, Journal of Functional Analysis, Volume 260 (2011) no. 10, p. 3036 | DOI:10.1016/j.jfa.2011.02.004
  • CHAE, MYEONGJU THE GLOBAL CLASSICAL SOLUTION OF THE VLASOV–MAXWELL–FOKKER–PLANCK SYSTEM NEAR MAXWELLIAN, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 05, p. 1007 | DOI:10.1142/s0218202511005222
  • Bernardin, Frédéric; Bossy, Mireille; Chauvin, Claire; Jabir, Jean-François; Rousseau, Antoine Stochastic Lagrangian method for downscaling problems in computational fluid dynamics, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 44 (2010) no. 5, p. 885 | DOI:10.1051/m2an/2010046
  • Yang, Tong; Yu, Hongjun Global Classical Solutions for the Vlasov–Maxwell–Fokker–Planck System, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 1, p. 459 | DOI:10.1137/090755796
  • Bostan, Mihai; Goudon, Thierry High-electric-field limit for the Vlasov–Maxwell–Fokker–Planck system, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 25 (2008) no. 6, p. 1221 | DOI:10.1016/j.anihpc.2008.07.004
  • Degond, Pierre; Motsch, Sébastien Large Scale Dynamics of the Persistent Turning Walker Model of Fish Behavior, Journal of Statistical Physics, Volume 131 (2008) no. 6, p. 989 | DOI:10.1007/s10955-008-9529-8
  • Hérau, Frédéric Short and long time behavior of the Fokker–Planck equation in a confining potential and applications, Journal of Functional Analysis, Volume 244 (2007) no. 1, p. 95 | DOI:10.1016/j.jfa.2006.11.013
  • Ha, Seung-Yeal; Noh, Se Eun Remarks on the stability of the frictionless Vlasov-Poisson-Fokker-Planck system, Journal of Mathematical Physics, Volume 48 (2007) no. 7 | DOI:10.1063/1.2746130
  • ASADZADEH, M.; SOPASAKIS, A. CONVERGENCE OF A hp-STREAMLINE DIFFUSION SCHEME FOR VLASOV–FOKKER–PLANCK SYSTEM, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 08, p. 1159 | DOI:10.1142/s0218202507002236
  • Goudon, Thierry; Miljanović, Vera; Schmeiser, Christian On the Shockley–Read–Hall Model: Generation-Recombination in Semiconductors, SIAM Journal on Applied Mathematics, Volume 67 (2007) no. 4, p. 1183 | DOI:10.1137/060650751
  • Xiao, Ling; Li, Fucai; Wang, Shu Convergence of the Vlasov-Poisson-Fokker-Planck system to the incompressible Euler equations, Science in China Series A, Volume 49 (2006) no. 2, p. 255 | DOI:10.1007/s11425-005-0062-9
  • Goudon, T.; Nieto, J.; Poupaud, F.; Soler, J. Multidimensional high-field limit of the electrostatic Vlasov–Poisson–Fokker–Planck system, Journal of Differential Equations, Volume 213 (2005) no. 2, p. 418 | DOI:10.1016/j.jde.2004.09.008
  • GOUDON, THIERRY HYDRODYNAMIC LIMIT FOR THE VLASOV–POISSON–FOKKER–PLANCK SYSTEM: ANALYSIS OF THE TWO-DIMENSIONAL CASE, Mathematical Models and Methods in Applied Sciences, Volume 15 (2005) no. 05, p. 737 | DOI:10.1142/s021820250500056x
  • Ono, Kosuke Global Existence of Regular Solutions for the Vlasov–Poisson–Fokker–Planck System, Journal of Mathematical Analysis and Applications, Volume 263 (2001) no. 2, p. 626 | DOI:10.1006/jmaa.2001.7640
  • Cui, Guozhong; Song, Jinping GLOBAL EXISTENCE OF SMOOTH SOLUTION FOR BOLTZMANN-POISSON SYSTEM WITH SMALL DATA, Acta Mathematica Scientia, Volume 20 (2000) no. 2, p. 189 | DOI:10.1016/s0252-9602(17)30557-x
  • Golse, François; Saint-Raymond, Laure L'approximation centre-guide pour l'équation de Vlasov-Poisson 2D, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 327 (1998) no. 10, p. 865 | DOI:10.1016/s0764-4442(99)80034-2
  • Carpio, Ana Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation, Mathematical Methods in the Applied Sciences, Volume 21 (1998) no. 11, p. 985 | DOI:10.1002/(sici)1099-1476(19980725)21:11<985::aid-mma919>3.0.co;2-b
  • Lai, Raymond On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity, Mathematical Methods in the Applied Sciences, Volume 21 (1998) no. 14, p. 1287 | DOI:10.1002/(sici)1099-1476(19980925)21:14<1287::aid-mma996>3.0.co;2-g
  • Schaeffer, Jack Convergence of a Difference Scheme for the Vlasov–Poisson–Fokker–Planck System in One Dimension, SIAM Journal on Numerical Analysis, Volume 35 (1998) no. 3, p. 1149 | DOI:10.1137/s0036142996302554
  • Zhan, Mei-Qin Convergence of Solutions of the Landau Equations in the Collisionless Limit, Mathematical Methods in the Applied Sciences, Volume 20 (1997) no. 8, p. 679 | DOI:10.1002/(sici)1099-1476(19970525)20:8<679::aid-mma876>3.0.co;2-v
  • Andréasson, Hkan Global existence of smooth solutions in three dimensions for the semiconductor vlasov-poisson-boltzmann equation, Nonlinear Analysis: Theory, Methods Applications, Volume 28 (1997) no. 7, p. 1193 | DOI:10.1016/s0362-546x(97)82869-6
  • Ping, Zhang; Qingjiu, Qiu On the existence of global weak solutions to two-component vlasov-poisson and Vlasov-Fokker-Planck systems in one space dimension with L1-initial data, Nonlinear Analysis: Theory, Methods Applications, Volume 29 (1997) no. 9, p. 1023 | DOI:10.1016/s0362-546x(96)00091-0
  • Carrillo, José A.; Soler, Juan On the initial value problem for the Vlasov‐Poisson‐Fokker‐Planck system with initial data in Lp spaces, Mathematical Methods in the Applied Sciences, Volume 18 (1995) no. 10, p. 825 | DOI:10.1002/mma.1670181006
  • Lai, Raymond On the one‐ and one‐half‐dimensional relativistic Vlasov‐Fokker‐Planck‐Maxwell system, Mathematical Methods in the Applied Sciences, Volume 18 (1995) no. 13, p. 1013 | DOI:10.1002/mma.1670181302
  • Zheng, Yuxi; Majda, Andrew Existence of global weak solutions to one‐component vlasov‐poisson and fokker‐planck‐poisson systems in one space dimension with measures as initial data, Communications on Pure and Applied Mathematics, Volume 47 (1994) no. 10, p. 1365 | DOI:10.1002/cpa.3160471004
  • Zhan, Mei-Qin Local existence of classical solutions to the Landau equations, Transport Theory and Statistical Physics, Volume 23 (1994) no. 4, p. 479 | DOI:10.1080/00411459408203875
  • Rein, Gerhard; Weckler, Jürgen Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, Journal of Differential Equations, Volume 99 (1992) no. 1, p. 59 | DOI:10.1016/0022-0396(92)90135-a
  • Victory, Harold Dean On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, Journal of Mathematical Analysis and Applications, Volume 160 (1991) no. 2, p. 525 | DOI:10.1016/0022-247x(91)90324-s
  • Dressler, Klaus Steady states in plasma physics—the Vlasov–Fokker–Planck equation, Mathematical Methods in the Applied Sciences, Volume 12 (1990) no. 6, p. 471 | DOI:10.1002/mma.1670120603
  • Poupaud, F. On a System of Nonlinear Boltzmann Equations of Semiconductor Physics, SIAM Journal on Applied Mathematics, Volume 50 (1990) no. 6, p. 1593 | DOI:10.1137/0150094

Cité par 85 documents. Sources : Crossref