@article{ASENS_1986_4_19_4_519_0, author = {Degond, Pierre}, title = {Global existence of smooth solutions for the {Vlasov-Fokker-Planck} equation in $1$ and $2$ space dimensions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {519--542}, publisher = {Elsevier}, volume = {Ser. 4, 19}, number = {4}, year = {1986}, doi = {10.24033/asens.1516}, mrnumber = {88d:35168}, zbl = {0619.35087}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.1516/} }
TY - JOUR AU - Degond, Pierre TI - Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions JO - Annales scientifiques de l'École Normale Supérieure PY - 1986 SP - 519 EP - 542 VL - 19 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.24033/asens.1516/ DO - 10.24033/asens.1516 LA - en ID - ASENS_1986_4_19_4_519_0 ER -
%0 Journal Article %A Degond, Pierre %T Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions %J Annales scientifiques de l'École Normale Supérieure %D 1986 %P 519-542 %V 19 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.24033/asens.1516/ %R 10.24033/asens.1516 %G en %F ASENS_1986_4_19_4_519_0
Degond, Pierre. Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 19 (1986) no. 4, pp. 519-542. doi : 10.24033/asens.1516. https://www.numdam.org/articles/10.24033/asens.1516/
[1] Global existence of a weak solution of Vlasov's system of equations (USSR comput. Math. and Math. Phys., Vol. 15, 1975, pp. 131-143).
,[2] Sur une équation d'évolution changeant de type (J. of functional analysis, 1968, pp. 352-367). | MR | Zbl
and ,[3] Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data to appear in Ann. Inst. Henri-Poincaré ; Analyse non linéaire, Vol. 2, No. 2, 1985, pp. 101-118. | EuDML | Numdam | MR | Zbl
and ,[4] Remarks on the breakdown of smooth solutions for the 3.D Euler equations, Preprint, university of Berkeley. | Zbl
, and ,[5] Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Internal Report No. 117, Centre de Mathématiques appliquées, Ecole Polytechnique, Paris. | Zbl
,[6] Existence of solutions and diffusion approximation for a model Fokker-Planck equation of a monoenergetic plasma, Manuscript to appear in internal reports, Ecole Polytechnique. | Zbl
and ,[7] On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation (Math. meth. in the appl. Sci, Vol. 3, 1981, pp. 229-248). | MR | Zbl
,[8] An existence theorem for the unmodified Vlasov equation (Math. meth. in the appl. Sci., Vol. 1, 1979, pp. 530-554). | MR | Zbl
and ,[9] The Cauchy problem for the kinetic equation of Plasma (Amer. Math. Soc. Trans., Vol. 2-35, 1964, pp. 351-363). | Zbl
,[10] Equations différentielles opérationnelles et problèmes aux limites, Springer, Berlin, 1961. | Zbl
,[11] On the Vlasov-Fokker-Planck equation, preprint n° 77, Fachbereich Mathematik, Universitöt Kaiserlautern, January 1984. | MR
, and ,[12] Topics is nonlinear analysis, Publications mathématiques de l'Université de Paris-Sud (Orsay), novembre 1978. | Zbl
,[13] On the classical solution in the large in time of the two dimensional Vlasov equation (Osaka J. of math., Vol. 15, 1978, pp. 245-261). | MR | Zbl
and ,[14] Existence and uniqueness theory of the Vlasov equation, Internal report, Courant Institute, New York, October 1982.
,- Local wellposedness of the Vlasov‐Riesz‐Fokker‐Planck system in modulation space, Mathematical Methods in the Applied Sciences, Volume 48 (2025) no. 3, p. 3581 | DOI:10.1002/mma.10502
- Optimal control of a semiclassical Boltzmann equation for charge transport in graphene, Communications in Nonlinear Science and Numerical Simulation, Volume 132 (2024), p. 107933 | DOI:10.1016/j.cnsns.2024.107933
- On a Vlasov-Fokker-Planck equation for stored electron beams, Journal of Differential Equations, Volume 404 (2024), p. 316 | DOI:10.1016/j.jde.2024.05.056
- Global Cauchy problem for the Vlasov–Riesz–Fokker–Planck system near the global Maxwellian, Journal of Evolution Equations, Volume 24 (2024) no. 3 | DOI:10.1007/s00028-024-00995-2
- Exponential Entropy Dissipation for Weakly Self-Consistent Vlasov–Fokker–Planck Equations, Journal of Nonlinear Science, Volume 34 (2024) no. 1 | DOI:10.1007/s00332-023-09984-0
- Uniform error estimate of an asymptotic preserving scheme for the Lévy-Fokker-Planck equation, Mathematics of Computation (2024) | DOI:10.1090/mcom/3975
- Weak and Renormalized Solutions to a Hypoelliptic Mean Field Games System, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 2, p. 2312 | DOI:10.1137/22m1497936
- On the dynamics of charged particles in an incompressible flow: From kinetic-fluid to fluid–fluid models, Communications in Contemporary Mathematics, Volume 25 (2023) no. 07 | DOI:10.1142/s0219199722500122
- Local well-posedness of VPFP in hybrid modulation-Lebesgue space, Journal of Differential Equations, Volume 373 (2023), p. 216 | DOI:10.1016/j.jde.2023.07.016
- Global-in-time existence of weak solutions for Vlasov-Manev-Fokker-Planck system, Kinetic and Related Models, Volume 16 (2023) no. 1, p. 41 | DOI:10.3934/krm.2022021
- Local existence of weak solutions to kinetic Cucker‐Smale‐Fokker‐Planck equation with singular commutation weights, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 9, p. 9902 | DOI:10.1002/mma.9092
- Convergence of a Direct Simulation Monte Carlo Method for the Space Inhomogeneous Semiconductor Boltzmann Equations with Multi-valley, Multiscale Modeling Simulation, Volume 21 (2023) no. 3, p. 884 | DOI:10.1137/22m1469511
- Diffusive Limit of the Vlasov–Poisson–Fokker–Planck Model: Quantitative and Strong Convergence Results, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 5, p. 5464 | DOI:10.1137/22m1530197
- Quantified overdamped limit for kinetic Vlasov–Fokker–Planck equations with singular interaction forces, Journal of Differential Equations, Volume 330 (2022), p. 150 | DOI:10.1016/j.jde.2022.05.008
- Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system, Kinetic and Related Models, Volume 15 (2022) no. 3, p. 355 | DOI:10.3934/krm.2021052
- Cauchy Theory for General Kinetic Vicsek Models in Collective Dynamics and Mean-Field Limit Approximations, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 1, p. 1131 | DOI:10.1137/21m1405885
- A Quadratic Mean Field Games Model for the Langevin Equation, Axioms, Volume 10 (2021) no. 2, p. 68 | DOI:10.3390/axioms10020068
- Vlasov–Poisson–Fokker–Planck equation in E2,1s space, Illinois Journal of Mathematics, Volume 65 (2021) no. 3 | DOI:10.1215/00192082-9402086
- On Global Existence and Regularity of Solutions for a Transport Problem Related to Charged Particles, Journal of Computational and Theoretical Transport, Volume 50 (2021) no. 3, p. 180 | DOI:10.1080/23324309.2020.1851722
- The Navier–Stokes–Vlasov–Fokker–Planck System as a Scaling Limit of Particles in a Fluid, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 2 | DOI:10.1007/s00021-021-00570-6
- Incompressible Navier-Stokes-Fourier limit from the Landau equation, Kinetic Related Models, Volume 14 (2021) no. 4, p. 599 | DOI:10.3934/krm.2021017
- Stochastic variational principles for the collisional Vlasov–Maxwell and Vlasov–Poisson equations, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 477 (2021) no. 2252 | DOI:10.1098/rspa.2021.0167
- Trend to equilibrium for the kinetic Fokker-Planck equation via the neural network approach, Journal of Computational Physics, Volume 419 (2020), p. 109665 | DOI:10.1016/j.jcp.2020.109665
- Stochastic Lohe Matrix Model on the Lie Group and Mean-Field Limit, Journal of Statistical Physics, Volume 178 (2020) no. 6, p. 1467 | DOI:10.1007/s10955-020-02516-0
- On the Mean-Field Limit for the Vlasov–Poisson–Fokker–Planck System, Journal of Statistical Physics, Volume 181 (2020) no. 5, p. 1915 | DOI:10.1007/s10955-020-02648-3
- Diffusion Approximation for Fokker Planck with Heavy Tail Equilibria: A Spectral Method in Dimension 1, Communications in Mathematical Physics, Volume 366 (2019) no. 2, p. 709 | DOI:10.1007/s00220-019-03315-9
- Fractional Diffusion Limit for a Fractional Vlasov–Fokker–Planck Equation, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 1, p. 469 | DOI:10.1137/17m1152073
- A convergent numerical scheme for integrodifferential kinetic models of angiogenesis, Journal of Computational Physics, Volume 375 (2018), p. 1270 | DOI:10.1016/j.jcp.2018.09.008
- Large-Time Behavior of Solutions to Vlasov-Poisson-Fokker-Planck Equations: From Evanescent Collisions to Diffusive Limit, Journal of Statistical Physics, Volume 170 (2018) no. 5, p. 895 | DOI:10.1007/s10955-018-1963-7
- Constructing solutions for a kinetic model of angiogenesis in annular domains, Applied Mathematical Modelling, Volume 45 (2017), p. 303 | DOI:10.1016/j.apm.2016.12.028
- Variational approach to coarse-graining of generalized gradient flows, Calculus of Variations and Partial Differential Equations, Volume 56 (2017) no. 4 | DOI:10.1007/s00526-017-1186-9
- Emergent dynamics of Cucker–Smale flocking particles in a random environment, Journal of Differential Equations, Volume 262 (2017) no. 3, p. 2554 | DOI:10.1016/j.jde.2016.11.017
- High-order Hamiltonian splitting for the Vlasov–Poisson equations, Numerische Mathematik, Volume 135 (2017) no. 3, p. 769 | DOI:10.1007/s00211-016-0816-z
- On the analysis of a coupled kinetic-fluid model with local alignment forces, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 33 (2016) no. 2, p. 273 | DOI:10.1016/j.anihpc.2014.10.002
- Stationary solutions of the Vlasov–Fokker–Planck equation: Existence, characterization and phase-transition, Applied Mathematics Letters, Volume 52 (2016), p. 38 | DOI:10.1016/j.aml.2015.08.003
- Global Weak Solutions for Kolmogorov–Vicsek Type Equations with Orientational Interactions, Archive for Rational Mechanics and Analysis, Volume 222 (2016) no. 1, p. 317 | DOI:10.1007/s00205-016-1002-2
- On massless electron limit for a multispecies kinetic system with external magnetic field, Journal of Differential Equations, Volume 260 (2016) no. 11, p. 7861 | DOI:10.1016/j.jde.2016.02.005
- On global existence and trend to the equilibrium for the Vlasov–Poisson–Fokker–Planck system with exterior confining potential, Journal of Functional Analysis, Volume 271 (2016) no. 5, p. 1301 | DOI:10.1016/j.jfa.2016.04.030
- The Vlasov–Maxwell–Fokker–Planck system in two space dimensions, Mathematical Methods in the Applied Sciences, Volume 39 (2016) no. 2, p. 302 | DOI:10.1002/mma.3478
- Well posedness of an integrodifferential kinetic model of Fokker–Planck type for angiogenesis, Nonlinear Analysis: Real World Applications, Volume 30 (2016), p. 184 | DOI:10.1016/j.nonrwa.2016.01.002
- Global classical solutions for quantum kinetic fokker-planck equations, Acta Mathematica Scientia, Volume 35 (2015) no. 1, p. 140 | DOI:10.1016/s0252-9602(14)60147-8
- Diffusion limit of Fokker−Planck equation with heavy tail equilibria, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 49 (2015) no. 1, p. 1 | DOI:10.1051/m2an/2014020
- Lagrangian stochastic models with specular boundary condition, Journal of Functional Analysis, Volume 268 (2015) no. 6, p. 1309 | DOI:10.1016/j.jfa.2014.11.016
- Pointwise Description for the Linearized Fokker–Planck–Boltzmann Model, Journal of Statistical Physics, Volume 160 (2015) no. 5, p. 1277 | DOI:10.1007/s10955-015-1206-0
- Global classical solutions for the "One and one-half” dimensional relativistic Vlasov-Maxwell-Fokker-Planck system, Kinetic Related Models, Volume 8 (2015) no. 1, p. 169 | DOI:10.3934/krm.2015.8.169
- Sur la dynamique de corps solides immergés dans un fluide incompressible, Séminaire Laurent Schwartz — EDP et applications (2014), p. 1 | DOI:10.5802/slsedp.39
- Уравнения Власова - Пуассона для двукомпонентной плазмы в однородном магнитном поле, Успехи математических наук, Volume 69 (2014) no. 2(416), p. 107 | DOI:10.4213/rm9579
- On local existence of the Vlasov-Fokker-Planck equation in a 2D anisotropic space, Boundary Value Problems, Volume 2013 (2013) no. 1 | DOI:10.1186/1687-2770-2013-233
- Klein-Kramers Equation and Burgers/Fokker-Planck Model of Spray, Computing Qualitatively Correct Approximations of Balance Laws, Volume 2 (2013), p. 241 | DOI:10.1007/978-88-470-2892-0_12
- GLOBAL CLASSICAL SOLUTIONS FOR A COMPRESSIBLE FLUID-PARTICLE INTERACTION MODEL, Journal of Hyperbolic Differential Equations, Volume 10 (2013) no. 03, p. 537 | DOI:10.1142/s0219891613500197
- Existence of Weak Solutions to Kinetic Flocking Models, SIAM Journal on Mathematical Analysis, Volume 45 (2013) no. 1, p. 215 | DOI:10.1137/120866828
- Global weak solutions of the Navier–Stokes–Fokker–Planck system, Ukrainian Mathematical Journal, Volume 65 (2013) no. 2, p. 212 | DOI:10.1007/s11253-013-0774-x
- Anomalous transport of particles in plasma physics, Applied Mathematics Letters, Volume 25 (2012) no. 12, p. 2344 | DOI:10.1016/j.aml.2012.06.029
- Numerical approximation of the Vlasov–Maxwell–Fokker–Planck system in two dimensions, Journal of Computational Physics, Volume 231 (2012) no. 9, p. 3483 | DOI:10.1016/j.jcp.2011.12.018
- An asymptotic preserving scheme for the vlasov-poisson-fokker-planck system in the high field regime, Acta Mathematica Scientia, Volume 31 (2011) no. 6, p. 2219 | DOI:10.1016/s0252-9602(11)60395-0
- Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance, Journal of Functional Analysis, Volume 260 (2011) no. 10, p. 3036 | DOI:10.1016/j.jfa.2011.02.004
- THE GLOBAL CLASSICAL SOLUTION OF THE VLASOV–MAXWELL–FOKKER–PLANCK SYSTEM NEAR MAXWELLIAN, Mathematical Models and Methods in Applied Sciences, Volume 21 (2011) no. 05, p. 1007 | DOI:10.1142/s0218202511005222
- Stochastic Lagrangian method for downscaling problems in computational fluid dynamics, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 44 (2010) no. 5, p. 885 | DOI:10.1051/m2an/2010046
- Global Classical Solutions for the Vlasov–Maxwell–Fokker–Planck System, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 1, p. 459 | DOI:10.1137/090755796
- High-electric-field limit for the Vlasov–Maxwell–Fokker–Planck system, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 25 (2008) no. 6, p. 1221 | DOI:10.1016/j.anihpc.2008.07.004
- Large Scale Dynamics of the Persistent Turning Walker Model of Fish Behavior, Journal of Statistical Physics, Volume 131 (2008) no. 6, p. 989 | DOI:10.1007/s10955-008-9529-8
- Short and long time behavior of the Fokker–Planck equation in a confining potential and applications, Journal of Functional Analysis, Volume 244 (2007) no. 1, p. 95 | DOI:10.1016/j.jfa.2006.11.013
- Remarks on the stability of the frictionless Vlasov-Poisson-Fokker-Planck system, Journal of Mathematical Physics, Volume 48 (2007) no. 7 | DOI:10.1063/1.2746130
- CONVERGENCE OF A hp-STREAMLINE DIFFUSION SCHEME FOR VLASOV–FOKKER–PLANCK SYSTEM, Mathematical Models and Methods in Applied Sciences, Volume 17 (2007) no. 08, p. 1159 | DOI:10.1142/s0218202507002236
- On the Shockley–Read–Hall Model: Generation-Recombination in Semiconductors, SIAM Journal on Applied Mathematics, Volume 67 (2007) no. 4, p. 1183 | DOI:10.1137/060650751
- Convergence of the Vlasov-Poisson-Fokker-Planck system to the incompressible Euler equations, Science in China Series A, Volume 49 (2006) no. 2, p. 255 | DOI:10.1007/s11425-005-0062-9
- Multidimensional high-field limit of the electrostatic Vlasov–Poisson–Fokker–Planck system, Journal of Differential Equations, Volume 213 (2005) no. 2, p. 418 | DOI:10.1016/j.jde.2004.09.008
- HYDRODYNAMIC LIMIT FOR THE VLASOV–POISSON–FOKKER–PLANCK SYSTEM: ANALYSIS OF THE TWO-DIMENSIONAL CASE, Mathematical Models and Methods in Applied Sciences, Volume 15 (2005) no. 05, p. 737 | DOI:10.1142/s021820250500056x
- Global Existence of Regular Solutions for the Vlasov–Poisson–Fokker–Planck System, Journal of Mathematical Analysis and Applications, Volume 263 (2001) no. 2, p. 626 | DOI:10.1006/jmaa.2001.7640
- GLOBAL EXISTENCE OF SMOOTH SOLUTION FOR BOLTZMANN-POISSON SYSTEM WITH SMALL DATA, Acta Mathematica Scientia, Volume 20 (2000) no. 2, p. 189 | DOI:10.1016/s0252-9602(17)30557-x
- L'approximation centre-guide pour l'équation de Vlasov-Poisson 2D, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 327 (1998) no. 10, p. 865 | DOI:10.1016/s0764-4442(99)80034-2
- Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation, Mathematical Methods in the Applied Sciences, Volume 21 (1998) no. 11, p. 985 | DOI:10.1002/(sici)1099-1476(19980725)21:11<985::aid-mma919>3.0.co;2-b
- On the one and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system with non-vanishing viscosity, Mathematical Methods in the Applied Sciences, Volume 21 (1998) no. 14, p. 1287 | DOI:10.1002/(sici)1099-1476(19980925)21:14<1287::aid-mma996>3.0.co;2-g
- Convergence of a Difference Scheme for the Vlasov–Poisson–Fokker–Planck System in One Dimension, SIAM Journal on Numerical Analysis, Volume 35 (1998) no. 3, p. 1149 | DOI:10.1137/s0036142996302554
- Convergence of Solutions of the Landau Equations in the Collisionless Limit, Mathematical Methods in the Applied Sciences, Volume 20 (1997) no. 8, p. 679 | DOI:10.1002/(sici)1099-1476(19970525)20:8<679::aid-mma876>3.0.co;2-v
- Global existence of smooth solutions in three dimensions for the semiconductor vlasov-poisson-boltzmann equation, Nonlinear Analysis: Theory, Methods Applications, Volume 28 (1997) no. 7, p. 1193 | DOI:10.1016/s0362-546x(97)82869-6
- On the existence of global weak solutions to two-component vlasov-poisson and Vlasov-Fokker-Planck systems in one space dimension with L1-initial data, Nonlinear Analysis: Theory, Methods Applications, Volume 29 (1997) no. 9, p. 1023 | DOI:10.1016/s0362-546x(96)00091-0
- On the initial value problem for the Vlasov‐Poisson‐Fokker‐Planck system with initial data in Lp spaces, Mathematical Methods in the Applied Sciences, Volume 18 (1995) no. 10, p. 825 | DOI:10.1002/mma.1670181006
- On the one‐ and one‐half‐dimensional relativistic Vlasov‐Fokker‐Planck‐Maxwell system, Mathematical Methods in the Applied Sciences, Volume 18 (1995) no. 13, p. 1013 | DOI:10.1002/mma.1670181302
- Existence of global weak solutions to one‐component vlasov‐poisson and fokker‐planck‐poisson systems in one space dimension with measures as initial data, Communications on Pure and Applied Mathematics, Volume 47 (1994) no. 10, p. 1365 | DOI:10.1002/cpa.3160471004
- Local existence of classical solutions to the Landau equations, Transport Theory and Statistical Physics, Volume 23 (1994) no. 4, p. 479 | DOI:10.1080/00411459408203875
- Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, Journal of Differential Equations, Volume 99 (1992) no. 1, p. 59 | DOI:10.1016/0022-0396(92)90135-a
- On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, Journal of Mathematical Analysis and Applications, Volume 160 (1991) no. 2, p. 525 | DOI:10.1016/0022-247x(91)90324-s
- Steady states in plasma physics—the Vlasov–Fokker–Planck equation, Mathematical Methods in the Applied Sciences, Volume 12 (1990) no. 6, p. 471 | DOI:10.1002/mma.1670120603
- On a System of Nonlinear Boltzmann Equations of Semiconductor Physics, SIAM Journal on Applied Mathematics, Volume 50 (1990) no. 6, p. 1593 | DOI:10.1137/0150094
Cité par 85 documents. Sources : Crossref