@article{ASENS_1986_4_19_4_519_0, author = {Degond, Pierre}, title = {Global existence of smooth solutions for the {Vlasov-Fokker-Planck} equation in $1$ and $2$ space dimensions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {519--542}, publisher = {Elsevier}, volume = {Ser. 4, 19}, number = {4}, year = {1986}, doi = {10.24033/asens.1516}, zbl = {0619.35087}, mrnumber = {88d:35168}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1516/} }
TY - JOUR AU - Degond, Pierre TI - Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions JO - Annales scientifiques de l'École Normale Supérieure PY - 1986 SP - 519 EP - 542 VL - 19 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1516/ DO - 10.24033/asens.1516 LA - en ID - ASENS_1986_4_19_4_519_0 ER -
%0 Journal Article %A Degond, Pierre %T Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions %J Annales scientifiques de l'École Normale Supérieure %D 1986 %P 519-542 %V 19 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.24033/asens.1516/ %R 10.24033/asens.1516 %G en %F ASENS_1986_4_19_4_519_0
Degond, Pierre. Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in $1$ and $2$ space dimensions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 19 (1986) no. 4, pp. 519-542. doi : 10.24033/asens.1516. http://archive.numdam.org/articles/10.24033/asens.1516/
[1] Global existence of a weak solution of Vlasov's system of equations (USSR comput. Math. and Math. Phys., Vol. 15, 1975, pp. 131-143).
,[2] Sur une équation d'évolution changeant de type (J. of functional analysis, 1968, pp. 352-367). | MR | Zbl
and ,[3] Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data to appear in Ann. Inst. Henri-Poincaré ; Analyse non linéaire, Vol. 2, No. 2, 1985, pp. 101-118. | EuDML | Numdam | MR | Zbl
and ,[4] Remarks on the breakdown of smooth solutions for the 3.D Euler equations, Preprint, university of Berkeley. | Zbl
, and ,[5] Local existence of solutions of the Vlasov-Maxwell equations and convergence to the Vlasov-Poisson equations for infinite light velocity, Internal Report No. 117, Centre de Mathématiques appliquées, Ecole Polytechnique, Paris. | Zbl
,[6] Existence of solutions and diffusion approximation for a model Fokker-Planck equation of a monoenergetic plasma, Manuscript to appear in internal reports, Ecole Polytechnique. | Zbl
and ,[7] On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation (Math. meth. in the appl. Sci, Vol. 3, 1981, pp. 229-248). | MR | Zbl
,[8] An existence theorem for the unmodified Vlasov equation (Math. meth. in the appl. Sci., Vol. 1, 1979, pp. 530-554). | MR | Zbl
and ,[9] The Cauchy problem for the kinetic equation of Plasma (Amer. Math. Soc. Trans., Vol. 2-35, 1964, pp. 351-363). | Zbl
,[10] Equations différentielles opérationnelles et problèmes aux limites, Springer, Berlin, 1961. | Zbl
,[11] On the Vlasov-Fokker-Planck equation, preprint n° 77, Fachbereich Mathematik, Universitöt Kaiserlautern, January 1984. | MR
, and ,[12] Topics is nonlinear analysis, Publications mathématiques de l'Université de Paris-Sud (Orsay), novembre 1978. | Zbl
,[13] On the classical solution in the large in time of the two dimensional Vlasov equation (Osaka J. of math., Vol. 15, 1978, pp. 245-261). | MR | Zbl
and ,[14] Existence and uniqueness theory of the Vlasov equation, Internal report, Courant Institute, New York, October 1982.
,Cité par Sources :