@article{ASENS_1987_4_20_3_465_0, author = {Nobile, A.}, title = {Genera of curves varying in a family}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {465--473}, publisher = {Elsevier}, volume = {Ser. 4, 20}, number = {3}, year = {1987}, doi = {10.24033/asens.1540}, mrnumber = {89b:14040}, zbl = {0687.14024}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1540/} }
TY - JOUR AU - Nobile, A. TI - Genera of curves varying in a family JO - Annales scientifiques de l'École Normale Supérieure PY - 1987 SP - 465 EP - 473 VL - 20 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1540/ DO - 10.24033/asens.1540 LA - en ID - ASENS_1987_4_20_3_465_0 ER -
Nobile, A. Genera of curves varying in a family. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 20 (1987) no. 3, pp. 465-473. doi : 10.24033/asens.1540. http://archive.numdam.org/articles/10.24033/asens.1540/
[1] Sulle condizioni perche una curva algebraica riducibile si possa considerare come limite di una curva irreducibile (Rend. Circ. Mat. Palermo, Vol. 52, 1928, p. 105-150). | JFM
,[2] Su una congettura di Petri (Comm. Math. Helvetici, Vol. 56, 1981, p. 1-38). | MR | Zbl
and ,[3] Réduction semi-stable, in Seminaire sur les pinceaux de courbes de genre au moins deux, Exp. N° 1 (Asterisque, Vol. 86, 1981, p. 1-34). | Zbl
,[4] Intersection Theory, Springer, 1984. | MR | Zbl
,[5] On the Severi Problem (Inv. Math., Vol. 84, 1986, p. 445-461). | MR | Zbl
,[6] Algebraic Geometry, Springer, 1977. | MR | Zbl
,[7] Genre et genre résuduel des corps de fonctions valués (Manuscrits Math. 58, 1987, p. 179-214). | MR | Zbl
,[8] On Specializations of Curves, I (Trans. Am. Math. Soc., Vol. 282, 1984, p. 739-748). | MR | Zbl
,[9] On Specializations of Curves, II (Arch. Math., Vol. 46, 1986, p. 279-288); and Correction: Arch. Math., Vol. 48, 1987, p. 552. | MR | Zbl
,[10] On Families of Plane Projective Cuves (Ann. Mat. Pura Appl., Vol. 138, 1984, p. 341-378). | MR | Zbl
,[11] Algebraic Surfaces, Springer, 1971. | MR | Zbl
,[12] Dimension Theoretic Characterization of Maximal Irreducible Algebraic Systems of Plane Nodal Curves of a Given Order n and with a Given Number of Nodes (Amer. J. Math., 1982, p. 209-226). | MR | Zbl
,Cited by Sources: