On the real cohomology of arithmetic groups and the rank conjecture for number fields
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 25 (1992) no. 3, pp. 287-306.
@article{ASENS_1992_4_25_3_287_0,
     author = {Yang, Jun},
     title = {On the real cohomology of arithmetic groups and the rank conjecture for number fields},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {287--306},
     publisher = {Elsevier},
     volume = {Ser. 4, 25},
     number = {3},
     year = {1992},
     doi = {10.24033/asens.1651},
     mrnumber = {93g:11056},
     zbl = {0770.11028},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.1651/}
}
TY  - JOUR
AU  - Yang, Jun
TI  - On the real cohomology of arithmetic groups and the rank conjecture for number fields
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1992
SP  - 287
EP  - 306
VL  - 25
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.24033/asens.1651/
DO  - 10.24033/asens.1651
LA  - en
ID  - ASENS_1992_4_25_3_287_0
ER  - 
%0 Journal Article
%A Yang, Jun
%T On the real cohomology of arithmetic groups and the rank conjecture for number fields
%J Annales scientifiques de l'École Normale Supérieure
%D 1992
%P 287-306
%V 25
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.24033/asens.1651/
%R 10.24033/asens.1651
%G en
%F ASENS_1992_4_25_3_287_0
Yang, Jun. On the real cohomology of arithmetic groups and the rank conjecture for number fields. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 25 (1992) no. 3, pp. 287-306. doi : 10.24033/asens.1651. http://archive.numdam.org/articles/10.24033/asens.1651/

[Bei] A. A. Beilinson, Higher Regulators and Values of L-Functions, English translations, (J. Soviet Math., Vol. 30, No. 2, 1985, pp. 2036-2070). | Zbl

[B1] S. Bloch, Higher Regulators, Algebraic K-Theory, and Zeta Functions of Elliptic Curves (Lect. Notes, U.C. Irvine, 1978).

[B1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts (Ann. Math., Vol. 57, 1953, pp. 115-207). | MR | Zbl

[B2] A. Borel, Introduction aux groupes arithmétiques, Publ. Inst. Math., Univ. Strasbourg, No. 15 (Actualites Sci. Indust., No. 1341, Hermann, Paris, 1969). | MR | Zbl

[B3] A. Borel, Stable Real Cohomology of Arithmetic Groups (Ann. Sci. Ec. Norm. Sup., 4, T. 7, 1974, pp. 235-272). | EuDML | Numdam | MR | Zbl

[B4] A. Borel, Cohomologie de SLn et valeurs de fonctions zeta (Ann. Scuola Normale Superiore, Vol. 7, 1974, pp. 613-636). | EuDML | Numdam | Zbl

[B5] A. Borel, Stable Real Cohomology of Arithmetic Groups II (Prog. Math. Boston, Vol. 14, 1981, pp. 21-55). | MR | Zbl

[BS] A. Borel and J.-P. Serre, Corners and Arithmetic Groups (Comment. Math. Helv., Vol. 48, 1974, pp. 244-297). | EuDML | MR | Zbl

[BT] A. Borel and J. Tits, Groupes réductifs, (Publ. Math. I.H.E.S., Vol. 27, 1965, pp. 55-150). | EuDML | Numdam | MR | Zbl

[Gi] H. Gillet, Riemann-Roch Theorems for Higher Algebraic K-Theory (Adv. Math., Vol. 40, 1981, pp. 203-289). | MR | Zbl

[VE] W. T. Van Est, On the Algebraic Cohomology Concepts in Lie Groups II (Proc. Konink. Nederl. Akad. v. Wet., Series A, Vol. 58, 1955, pp. 286-294). | MR | Zbl

[Ga] H. Garland, A Finiteness Theorem for K2 of a Number Field (Ann. Math., vol. 94, No. 2, 1971, pp. 534-548). | MR | Zbl

[Go] A. B. Goncharov, The Classical Three Logarithm, Algebraic K-Theory of Fields and Dedekind Zeta Functions (Bull. AMS., vol. 24, No. 1, 1991, pp. 155-162). | MR | Zbl

[H] H. Hiller, λ-Rings and Algebraic K-Theory (J. Pure Appl. Algebra, Vol. 20, No. 3, 1981, pp. 241-266. | MR | Zbl

[HM] R. Hain and R. Macpherson, Higher Logarithms, III (J. Math., Vol. 34, No. 2, 1990, pp. 392-475). | MR | Zbl

[L] J. L. Loday, K-théorie algébrique et représentations de groupes (Ann. Sci. Ec. Norm. Sup., T. 9, 1976, pp. 41-377). | Numdam | MR | Zbl

[MM] J. Milnor and J. Moore, On the Structure of Hopf Algebras (Ann. Math., Vol. 81, No. 2, 1965, pp. 211-264). | MR | Zbl

[Rh] G. De Rham, Differentiable Manifolds, English Translation, Springer-Verlag, 1984. | MR | Zbl

[W] A. Weil, Adeles and Algebraic Groups, Notes by M. DEMAZURE and T. ONO, The Institute for Advanced Study, Princeton, 1961.

[Y] J. Yang, Algebraic k-groups of Number Fields and the Hain-MacPherson Trilogarithm, Thesis, 1991.

[Z] D. Zagier, The Bloch-Wigner-Ramakrishnan Polylogarithm Function (Math. Ann., Vol. 286, No. 1-3, 1990, pp. 613-624). | MR | Zbl

Cité par Sources :