Bifurcation diagrams and Fomenko’s surgery on Liouville tori of the Kolossoff potential U=ρ+(1/ρ)-kcosφ
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 26 (1993) no. 5, pp. 545-564.
@article{ASENS_1993_4_26_5_545_0,
     author = {Gavrilov, Ljubomir and Ouazzani-Jamil, Mohammed and Caboz, R\'egis},
     title = {Bifurcation diagrams and {Fomenko{\textquoteright}s} surgery on {Liouville} tori of the {Kolossoff} potential $U=\rho +(1/\rho )-k\cos \phi $},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {545--564},
     publisher = {Elsevier},
     volume = {Ser. 4, 26},
     number = {5},
     year = {1993},
     doi = {10.24033/asens.1680},
     zbl = {0797.34042},
     mrnumber = {94i:70017},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.1680/}
}
TY  - JOUR
AU  - Gavrilov, Ljubomir
AU  - Ouazzani-Jamil, Mohammed
AU  - Caboz, Régis
TI  - Bifurcation diagrams and Fomenko’s surgery on Liouville tori of the Kolossoff potential $U=\rho +(1/\rho )-k\cos \phi $
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1993
DA  - 1993///
SP  - 545
EP  - 564
VL  - Ser. 4, 26
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.24033/asens.1680/
UR  - https://zbmath.org/?q=an%3A0797.34042
UR  - https://www.ams.org/mathscinet-getitem?mr=94i:70017
UR  - https://doi.org/10.24033/asens.1680
DO  - 10.24033/asens.1680
LA  - en
ID  - ASENS_1993_4_26_5_545_0
ER  - 
%0 Journal Article
%A Gavrilov, Ljubomir
%A Ouazzani-Jamil, Mohammed
%A Caboz, Régis
%T Bifurcation diagrams and Fomenko’s surgery on Liouville tori of the Kolossoff potential $U=\rho +(1/\rho )-k\cos \phi $
%J Annales scientifiques de l'École Normale Supérieure
%D 1993
%P 545-564
%V Ser. 4, 26
%N 5
%I Elsevier
%U https://doi.org/10.24033/asens.1680
%R 10.24033/asens.1680
%G en
%F ASENS_1993_4_26_5_545_0
Gavrilov, Ljubomir; Ouazzani-Jamil, Mohammed; Caboz, Régis. Bifurcation diagrams and Fomenko’s surgery on Liouville tori of the Kolossoff potential $U=\rho +(1/\rho )-k\cos \phi $. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 26 (1993) no. 5, pp. 545-564. doi : 10.24033/asens.1680. http://archive.numdam.org/articles/10.24033/asens.1680/

[1] M. Adler and P. Van Moerbeke, Algebraic Completely Integrable Systems : a systematic approach, Perspectives in Mathematics, Academic Press (to appear in 1992).

[2] F. M. El-Sabaa, Solution of Equations of Problm of Motion of a Heavy Rigid Body About a Fixed Point in the Kowalevskaya's Case Using θ - Function (Celestial Mech., Vol. 29, 1983, pp. 249-253.). | MR | Zbl

[3] A. T. Fomenko, Integrability and Nonintegrability in Geometry and Mechanics, Kluwer Acad. Publishers, 1988. | MR | Zbl

[4] L. Gavrilov, On the Geometry of Gorjatchev-Tchaplygin top (Compt. rend. Acad. bulg. Sci., Vol. 40, No 9, pp. 33-36, 1987). | MR | Zbl

[5] L. Gavrilov, Bifurcations of Invariant Manifolds in the Generalized Hénon-Heiles System (Physica D, Vol. 34, 1989, pp. 223-239). | MR | Zbl

[6] L. Gavrilov, Non-Integrability of the Equation of Heavy Gyrostat (Comp. Mathematica, Vol. 82, 1992, pp. 275-291). | Numdam | MR | Zbl

[7] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978. | MR | Zbl

[8] G. Kolossoff, Zur Rotation eines Körpers im Kowalewski'schen Falle, (Mathematische Annalen, Vol. 56, 1903, pp. 265-272). | JFM

[9] M. P. Kharlamov, Bifurcation of Common Levels of First Integrals of the Kovalevskaya Problem (PMM U.S.S.R., Vol. 47, No 6, 1983, pp. 737-743). | MR | Zbl

[10] M. P. Kharlamov, Topological Analysis of Classical Integrable Systems in the Dynamics of the Rigid Body (Soviet Math. Dokl., Vol. 28, No 3, 1983, pp. 802-805). | MR | Zbl

[11] S. Kovalevskaya, Sur le problème de la rotation d'un corps solide autour d'un point fixe (Acta Math., Vol. 12, 1889, pp. 177-232). | JFM | MR

[12] S. M. Natanzon, Klein Surfaces (Russian Math. Surveys, Vol. 45, 6, 1990, pp. 53-108). | MR | Zbl

[13] Nguen T'En Zung and A. T. Fomenko, Topological classification of integrable non-degenerate Hamiltonians on a constant energy three-dimensional sphere (Russian Math. Surveys, Vol. 45, 6, 1990, pp. 109-135). | MR | Zbl

[14] Encyklopädie der Mathematischen Wissenschaften, Band II, 2 Teil (Leipzig 1901), pp. 766-768.

[15] H. Yoshida (Celestial Mech., Vol. 31, 1983, p. 363). | Zbl

Cited by Sources: