Deriving DG categories
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 27 (1994) no. 1, pp. 63-102.
@article{ASENS_1994_4_27_1_63_0,
     author = {Keller, Bernhard},
     title = {Deriving {DG} categories},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {63--102},
     publisher = {Elsevier},
     volume = {Ser. 4, 27},
     number = {1},
     year = {1994},
     doi = {10.24033/asens.1689},
     mrnumber = {95e:18010},
     zbl = {0799.18007},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.1689/}
}
TY  - JOUR
AU  - Keller, Bernhard
TI  - Deriving DG categories
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1994
SP  - 63
EP  - 102
VL  - 27
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.24033/asens.1689/
DO  - 10.24033/asens.1689
LA  - en
ID  - ASENS_1994_4_27_1_63_0
ER  - 
%0 Journal Article
%A Keller, Bernhard
%T Deriving DG categories
%J Annales scientifiques de l'École Normale Supérieure
%D 1994
%P 63-102
%V 27
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.24033/asens.1689/
%R 10.24033/asens.1689
%G en
%F ASENS_1994_4_27_1_63_0
Keller, Bernhard. Deriving DG categories. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 27 (1994) no. 1, pp. 63-102. doi : 10.24033/asens.1689. http://archive.numdam.org/articles/10.24033/asens.1689/

[1] A. A. Beilinson, V. Ginsburg and V. A. Schechtman, Koszul duality (Journal of Geometry and Physics, Vol. 5, 1988, pp. 317-350). | MR | Zbl

[2] A. A. Beilinson V. Ginsburg and W. Soergel, Koszul Duality Patterns in Representation Theory, preprint, 1991.

[3] E. H. Brown, Cohomology Theories (Ann. of Math., Vol. 75, 1962, pp. 467-484). | MR | Zbl

[4] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956. | MR | Zbl

[5] P. Freyd, Abelian Categories, Harper, 1966. | MR | Zbl

[6] P. Gabriel, Des catégories abéliennes (Bull. Soc. Math. France, Vol. 90, 1962, pp. 323-448). | Numdam | MR | Zbl

[7] P. Gabriel and A. V. Roiter, Representations of Finite-dimensional Algebras, Encyclopaedia of Mathematical Sciences, Vol. 73, Springer, 1992. | MR | Zbl

[8] A. Grothendieck, Éléments de Géométrie algébrique, III, Étude cohomologique des faisceaux cohérents (Publ. Math. IHES, Vol. 11, 1961). | Numdam | Zbl

[9] D. Happel, On the derived Category of a Finite-dimensional Algebra (Comment. Math. Helv., Vol. 62, 1987, pp. 339-389). | MR | Zbl

[10] G. Hochschild, B. Kostant and A. Rosenberg, Differential Forms on regular affine Algebras (Trans. Amer. Math. Soc., Vol. 102, 1962, pp. 383-408). | MR | Zbl

[11] L. Illusie, Complexe cotangent et déformations II (Springer LNM, Vol. 283, 1972). | MR | Zbl

[12] B. Keller, Chain Complexes and Stable Categories (Manus. Math., Vol. 67, 1990, pp. 379-417). | MR | Zbl

[13] B. Keller, A Remark on Tilting Theory and DG algebras (Manus. Math., Vol. 79, 1993, pp. 247-252). | MR | Zbl

[14] B. Keller and D. Vossieck, Sous les catégories dérivées (C. R. Acad. Sci. Paris, Vol. 305, Série I, 1987, pp. 225-228). | MR | Zbl

[15] S. Maclane, Homology, Springer-Verlag, 1963. | MR | Zbl

[16] D. Quillen, Higher Algebraic K-theory I (Springer LNM, Vol. 341, 1973, pp. 85-147). | MR | Zbl

[17] A. Neeman, The Connection between the K-theory Localization Theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Preprint. | Numdam | Zbl

[18] D. C. Ravenel, Localization with Respect to Certain Periodic Homology Theories (Amer J. of Math., Vol. 106, 1984, pp. 351-414). | MR | Zbl

[19] J. Rickard, Morita Theory for Derived Categories (Journal of the London Math. Soc., 39, 1989, 436-456). | MR | Zbl

[20] J. Rickard Derived Equivalences as Derived Functors (J. London Math. Soc., Vol. 43, 1991, pp. 37-48). | MR | Zbl

[21] G. Rinehart, Differential Forms on General Commutative Algebras (Trans. Amer. Math. Soc., Vol. 108, 1965, pp. 195-222). | MR | Zbl

[22] H. Toda, Composition Methods in Homotopy Groups of Spheres, Princeton University Press, 1962. | MR | Zbl

[23] J.-L. Verdier, Catégories dérivées, état 0, SGA 4 1/2 (Springer LNM, Vol. 569, 1977, pp. 262-311). | MR | Zbl

Cité par Sources :