Equivariant cyclic homology and equivariant differential forms
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 27 (1994) no. 4, pp. 493-527.
@article{ASENS_1994_4_27_4_493_0,
     author = {Block, Jonathan and Getzler, Ezra},
     title = {Equivariant cyclic homology and equivariant differential forms},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {493--527},
     publisher = {Elsevier},
     volume = {Ser. 4, 27},
     number = {4},
     year = {1994},
     doi = {10.24033/asens.1699},
     mrnumber = {95h:19002},
     zbl = {0849.55008},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.1699/}
}
TY  - JOUR
AU  - Block, Jonathan
AU  - Getzler, Ezra
TI  - Equivariant cyclic homology and equivariant differential forms
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1994
SP  - 493
EP  - 527
VL  - 27
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.24033/asens.1699/
DO  - 10.24033/asens.1699
LA  - en
ID  - ASENS_1994_4_27_4_493_0
ER  - 
%0 Journal Article
%A Block, Jonathan
%A Getzler, Ezra
%T Equivariant cyclic homology and equivariant differential forms
%J Annales scientifiques de l'École Normale Supérieure
%D 1994
%P 493-527
%V 27
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.24033/asens.1699/
%R 10.24033/asens.1699
%G en
%F ASENS_1994_4_27_4_493_0
Block, Jonathan; Getzler, Ezra. Equivariant cyclic homology and equivariant differential forms. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 27 (1994) no. 4, pp. 493-527. doi : 10.24033/asens.1699. http://archive.numdam.org/articles/10.24033/asens.1699/

[1] P. Baum, J. L. Brylinski and R. Macpherson, Cohomologie équivariante délocalisée (C. R. Acad. Sci. Paris, Vol. 300, 1985, pp. 605-608). | MR | Zbl

[2] N. Berline and M. Vergne, The equivariant index and Kirillov character formula (Amer. J. Math., Vol. 107, 1985, pp. 1159-1190). | MR | Zbl

[3] J. Block, Excision in cyclic homology of topological algebras, Harvard University thesis, 1987.

[4] J. L. Brylinski, Algebras associated with group actions and their homology, Brown University preprint, 1986.

[5] J. L. Brylinski, Cyclic homology and equivariant theories (Ann. Inst. Fourier, Vol. 37, pp. 15-28). | Numdam | MR | Zbl

[6] A. Connes, Cohomologie cyclique et foncteurs Extn (C. R. Acad. Sci. Paris, Vol. 296, 1983, pp. 953-958). | MR | Zbl

[7] A. Connes, Entire cyclic cohomology of Banach algebras and characters of θ-summable Fredholm modules, K-Theory, Vol. 1, 1988, pp. 519-548. | MR | Zbl

[8] R. K. Dennis and K. Igusa, Hochschild homology and the second obstruction for pseudoisotopy, in Algebraic K-Theory (Lect. Notes in Math., Vol. 966, Springer-Verlag, Berlin-Heidelberg-New York, 1982). | MR | Zbl

[9] B. V. Fedosov, Analytic formulas for the index of elliptic operators (Trans. Moscow Math. Soc., Vol. 30, 1974, pp. 159-240). | MR | Zbl

[10] E. Getzler and J. D. S. Jones, A∞-algebras and the cyclic bar complex (Illinois J. Math., Vol. 34, 1989, pp. 256-283). | MR | Zbl

[11] E. Getzler and A. Szenes, On the Chern character of theta-summable Fredholm modules (J. Func. Anal., Vol. 84, 1989, pp. 343-357). | MR | Zbl

[12] G. D. Mostov, Equivariant imbeddings in Euclidean space (Ann. Math., Vol. 65, 1957, pp. 432-446). | MR | Zbl

[13] R. Palais, Imbedding of compact, differentiable transformation groups in orthogonal representations (J. Math. Mech., Vol. 6, 1957, pp. 673-678). | MR | Zbl

[14] G. B. Segal, Equivariant K-theory (Publ. Math. IHES, Vol. 34, 1968, pp. 129-151). | EuDML | Numdam | MR | Zbl

[15] J. L. Taylor, Homology and cohomology of topological algebras (Adv. Math., Vol. 9, 1972, pp. 137-182). | MR | Zbl

[16] J.-C. Tougeron, Idéaux de fonctions différentiables, Springer, Berlin-Heidelberg-New York, 1972. | MR | Zbl

[17] A. G. Wasserman, Equivariant differential topology (Topology, Vol. 8, 1969, pp. 127-150). | MR | Zbl

[18] M. Wodzicki, Excision in cyclic homology and rational algebraic K-theory (Ann. Math., Vol. 129, 1989, pp. 591-639). | MR | Zbl

Cited by Sources: