@article{ASENS_1995_4_28_4_493_0, author = {Joseph, Anthony and Letzter, Gail}, title = {Verma module annihilators for quantized enveloping algebras}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {493--526}, publisher = {Elsevier}, volume = {Ser. 4, 28}, number = {4}, year = {1995}, doi = {10.24033/asens.1723}, mrnumber = {96i:17011}, zbl = {0838.17011}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1723/} }
TY - JOUR AU - Joseph, Anthony AU - Letzter, Gail TI - Verma module annihilators for quantized enveloping algebras JO - Annales scientifiques de l'École Normale Supérieure PY - 1995 SP - 493 EP - 526 VL - 28 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1723/ DO - 10.24033/asens.1723 LA - en ID - ASENS_1995_4_28_4_493_0 ER -
%0 Journal Article %A Joseph, Anthony %A Letzter, Gail %T Verma module annihilators for quantized enveloping algebras %J Annales scientifiques de l'École Normale Supérieure %D 1995 %P 493-526 %V 28 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.24033/asens.1723/ %R 10.24033/asens.1723 %G en %F ASENS_1995_4_28_4_493_0
Joseph, Anthony; Letzter, Gail. Verma module annihilators for quantized enveloping algebras. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 28 (1995) no. 4, pp. 493-526. doi : 10.24033/asens.1723. http://archive.numdam.org/articles/10.24033/asens.1723/
[B] On the Joseph-Small additivity principle for Goldie ranks (Compos. Math., Vol. 43, 1982, pp. 3-29). | Numdam | MR | Zbl
,[BK] Über die Gelfand-Kirillov-Dimension (Math. Ann., Vol. 220, 1976, pp. 1-24). | MR | Zbl
and ,[Bo] Commutative algebra, Springer-Verlag, Berlin, 1980.
,[D] Algèbres enveloppantes, cahiers scientifiques no. 37, Gauthier-Villars, Paris, 1974. | MR | Zbl
,[DeC-K] Representations of quantum groups at roots of 1 (In Progress in Math., Vol. 92 (Ed. A. Connes et al.) Birkhauser, Boston, 1990, pp. 471-506). | MR | Zbl
and ,[Dr] On some unsolved problems in quantum group theory (In Quantum Groups, Ed. P.P. Kulish, LN 1510 Springer-Verlag, Berlin, 1992). | MR | Zbl
,[H] Topics in Ring Theory, Chicago Press, Chicago, 1969. | MR | Zbl
,[He] Characters of the Nullcone (Math. Ann., Vol. 252, 1980, pp. 179-182). | MR | Zbl
,[J1] The primitive spectrum of an enveloping algebra (Astérisque, Vol. 173-174, 1989, pp. 13-53). | Numdam | MR | Zbl
,[J2] Enveloping algebras : Problems old and new. (In Progress in Math., Vol. 123, Birkhäuser, Boston, 1994, pp. 385-413). | MR | Zbl
,[J3] A generalization of the Gelfand-Kirillov conjecture (Amer. J. Math., Vol. 99, 1977, pp. 1151-1165). | MR | Zbl
,[Ja] Moduln mit einem höchsten Gewicht, LN 750, Springer-Verlag, Heidelberg, 1979. | MR | Zbl
,[JL1] Local finiteness of the adjoint action for quantized enveloping algebras (J. Algebra, Vol. 153, 1992, pp. 289-318). | MR | Zbl
and ,[JL2] Separation of variables for quantized enveloping algebras. | Zbl
and ,[K] On the existence and irreducibility of certain series of representations (Bull. Amer. Math. Soc., Vol. 75, 1969, pp. 627-642). | MR | Zbl
,[KL] Growth of algebras and Gelfand-Kirillov dimension (Research Notes in Math., Vol. 116, Pitman, London, 1985). | MR | Zbl
and ,[L] Quantum deformations of certain simple modules over enveloping algebras (Adv. Math., Vol. 70, 1988, pp. 237-249). | MR | Zbl
,[M] Quantum groups, filtered rings and Gelfand-Kirillov dimension. (In Lecture Notes in Math., Vol. 1448, Springer, Berlin, 1991, pp. 139-149). | MR | Zbl
,[PRV] Representations of complex semi-simple Lie groups and Lie algebras (Annals of Math., Vol. 85, 1967, pp. 383-429). | MR | Zbl
, and ,[R1] Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra (Comm. Math. Phys., Vol. 117, 1988, pp. 581-593). | MR | Zbl
,[R2] Analogues de la forme de Killing et du théorème de Harish-Chandra pour les groupes quantiques (Ann. Sc. Ec. Norm. Sup., Vol. 23, 1990, pp. 445-467). | Numdam | MR | Zbl
,[S] On a theorem of Pittie (Topology, Vol. 14, 1975, pp. 173-7). | MR | Zbl
,Cité par Sources :