@article{ASENS_1996_4_29_1_1_0, author = {Levin, Genadi}, title = {Disconnected {Julia} set and rotation sets}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1--22}, publisher = {Elsevier}, volume = {Ser. 4, 29}, number = {1}, year = {1996}, doi = {10.24033/asens.1733}, mrnumber = {96k:30029}, zbl = {0857.30024}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1733/} }
TY - JOUR AU - Levin, Genadi TI - Disconnected Julia set and rotation sets JO - Annales scientifiques de l'École Normale Supérieure PY - 1996 SP - 1 EP - 22 VL - 29 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1733/ DO - 10.24033/asens.1733 LA - en ID - ASENS_1996_4_29_1_1_0 ER -
Levin, Genadi. Disconnected Julia set and rotation sets. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 29 (1996) no. 1, pp. 1-22. doi : 10.24033/asens.1733. http://archive.numdam.org/articles/10.24033/asens.1733/
[1] Geometrical methods in the theory of ordinary differential equations, Springer-Verlag, 1983. | MR | Zbl
,[2] The Riemann mapping theorem for variable metrics (Annals of Mathematics, Vol. 72, 1960, pp. 385-404). | MR | Zbl
and ,[3] A conformal mapping technique for infinitely connected regions (Memoirs of the AMS, Vol. 91, 1970). | MR | Zbl
and ,[4] Cubic polynomials : turning around the connectedness locus, The Technical University of Denmark, Mat-report 1992-2005.
,[5] Geometrical and electrical properties of some Julia sets (Lecture Notes in Pure and Applied Mathematics, Vol. 92, 1988). | MR | Zbl
, , and ,[6] The iteration of cubic polynomials, Part I : The global topology of parameter space (Acta Mathematica, Vol. 160, 1988, pp. 143-206). | MR | Zbl
and ,[7] Ordered orbits of the shift, square roots, and the devil's staircase (Preprint, Université Paris-Sud Mathématiques, 91-39, 1991).
and ,[8] Algorithms for computing angles in the Mandelbrot set (Caotic Dynamics and Fractals, ed. Barnsley and Demko, Acad. Press, 1986, pp. 155-168). | MR | Zbl
,[9] Iteration of complex quadratic polynomials (C.R.A.S., Vol. 294, 1982, pp. 123-126). | MR | Zbl
and ,[10] On the dynamics of polynomial-like mappings (Ann. École Norm. Sup., (4), Vol. 18, 1985, pp. 287-343). | Numdam | MR | Zbl
and ,[11] Étude dynamique des polynomes complexes I, II (Publication Mathématiques d'Orsay, no. 84-02, 1984, no. 85-04, 1985). | Zbl
and ,[12] On periodic points of polynomials (Ukrainskii Math. Journal, v. 41, n. 11, 1989). | MR | Zbl
and ,[13]
, preprint of Cornell University.[14] Fixed Points of Polynomial Maps II. Fixed Point Portraits (Ann. Scient. École Norm. Sup., (4), Vol. 26, 1993, pp. 51-98). | Numdam | MR | Zbl
and ,[15] Local connectivity of Julia sets and bifurcation loci : three theorems of J.-C. Yoccoz, preprint IHES, October 1992.
,[16] Une description combinatoire de l'involution définie par M sur les rationnels à dénominateur impair (C.R.A.S., Vol. 303, 1986, pp. 143-146). | MR | Zbl
,[17] On Pommerenke's inequality for the eigenvalues of fixed points (Colloquium Mathematicum, Vol. LXII, fasc. 1, 1991, pp. 168-177). | MR | Zbl
,[18] On the complement of the Mandelbrot set (Israel Journal of Mathematics, Vol. 88, 1994, pp. 189-212). | MR | Zbl
,[19] External rays to periodic points (Israel Journal of Mathematics, to appear). | Zbl
and ,[20] Polynomials with disconnected Julia sets and Green maps (The Hebrew University of Jerusalem, preprint no. 23, 1990/1991).
and ,[21] On conformal mapping and iteration of rational functions (Complex Variables, Vol. 5 (2-4), 1986, pp. 117-126). | MR | Zbl
,[22] On the Pommerenke-Levin-Yoccoz inequality (Ergodic Theory and Dynamical Systems, Vol. 13, 1993, pp. 785-806). | MR | Zbl
,[23] The limit-periodic finite difference operator on l2 (ℤ) associated with iterations of quadratic polynomials (J. Stat. Phys., Vol. 60, 1990, pp. 863-873). | MR | Zbl
and ,[24] Classification theory of Riemann Surfaces, Springer-Verlag, 1970. | MR | Zbl
and ,[25] Symbolic dynamics and rotation numbers (Physica 13A, 1986, pp. 543-576). | MR | Zbl
,[26] Sur la taille des membres de l'ensemble de Mandelbrot, manuscript (1987).
,Cité par Sources :