Wronski algebra systems on families of singular curves
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 29 (1996) no. 1, pp. 107-134.
@article{ASENS_1996_4_29_1_107_0,
     author = {Esteves, E.},
     title = {Wronski algebra systems on families of singular curves},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {107--134},
     publisher = {Elsevier},
     volume = {Ser. 4, 29},
     number = {1},
     year = {1996},
     doi = {10.24033/asens.1736},
     mrnumber = {96m:14041a},
     zbl = {0872.14025},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.1736/}
}
TY  - JOUR
AU  - Esteves, E.
TI  - Wronski algebra systems on families of singular curves
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1996
SP  - 107
EP  - 134
VL  - 29
IS  - 1
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.24033/asens.1736/
DO  - 10.24033/asens.1736
LA  - en
ID  - ASENS_1996_4_29_1_107_0
ER  - 
%0 Journal Article
%A Esteves, E.
%T Wronski algebra systems on families of singular curves
%J Annales scientifiques de l'École Normale Supérieure
%D 1996
%P 107-134
%V 29
%N 1
%I Elsevier
%U http://archive.numdam.org/articles/10.24033/asens.1736/
%R 10.24033/asens.1736
%G en
%F ASENS_1996_4_29_1_107_0
Esteves, E. Wronski algebra systems on families of singular curves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 29 (1996) no. 1, pp. 107-134. doi : 10.24033/asens.1736. http://archive.numdam.org/articles/10.24033/asens.1736/

[1] D. Buchsbaum and D. Eisenbud, What makes a complex exact ? (J. Algebra, Vol. 25, 1973, pp. 259-268). | MR | Zbl

[2] D. Eisenbud and J. Harris, Limit linear series : basic theory (Inventiones Math., Vol. 85, 1986, pp. 337-371). | MR | Zbl

[3] E. Esteves, The presentation functor and Weierstrass theory for families of local complete intersection curves (M.I.T. Ph. D. Thesis, 1994).

[4] A. Garcia and R. Lax, Weierstrass points on Gorenstein curves in arbitrary characteristic (Preprint).

[5] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique (Publ. Math. I.H.E.S., Vol. 24, 28, 32, 1965-1967). | Numdam

[6] S. Kleiman, Relative duality for quasi-coherent sheaves (Compositio Mathematica, Vol. 41, 1980, pp. 39-60). | Numdam | MR | Zbl

[7] D. Laksov, Weierstrass points on curves (Astérisque, Vol. 87, 1981, pp. 221-247). | Numdam | MR | Zbl

[8] D. Laksov, Wronskians and Plücker formulas for linear systems on curves (Ann. Sci. École Norm. Sup., Vol. 17, 1984, pp. 45-66). | Numdam | MR | Zbl

[9] D. Laksov and A. Thorup, The Brill-Segre formula for families of curves (Contemporary Mathematics, Vol. 123, 1991, pp. 131-148). | MR | Zbl

[10] D. Laksov and A. Thorup, Weierstrass points and gap sequences for families of curves (To appear in Ark. Math.). | Zbl

[11] S. Lang, Introduction to Arakelov theory (Springer-Verlag, 1988). | MR | Zbl

[12] R. Lax, On the distribution of Weierstrass points on singular curves (Israel J. Math., Vol. 57, 1987, pp. 107-115). | MR | Zbl

[13] R. Lax, Weierstrass weights and degenerations (Proc. Amer. Math. Soc., Vol. 101, 1987, pp. 8-10). | MR | Zbl

[14] H. Matsumura, Commutative ring theory (Cambridge studies in advanced mathematics, Vol. 8, 1986). | MR | Zbl

[15] B. Matzat, Ein Vortrag über Weierstrasspunkte (Karlsruhe, 1975).

[16] D. G. Northcott, Some remarks on the theory of ideals defined by matrices (Q. Jl. Math. Oxford, (2), Vol. 14, 1963, pp. 193-204). | MR | Zbl

[17] F. K. Schmidt, Die Wronskische Determinante in beliebigen differenzierbaren Funktionenkörpern (Math. Z., Vol. 45, 1939, pp. 62-74). | JFM | Zbl

[18] F. K. Schmidt, Zur arithmetischen Theorie der algebraischen Funktionen II (Math. Z., Vol. 45, 1939, pp. 75-96). | JFM | Zbl

[19] J.-P. Serre, Groupes algébriques et corps de classes (Hermann, Paris, 1959). | MR | Zbl

[20] C. Widland, On Weierstrass points of Gorenstein curves (Louisiana State University Ph. D. Thesis, 1984).

Cité par Sources :